

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

All educational contents of the INDEX 4.0 OER are licensed under CC-BY-NC-SA 4.0
Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International Public License

Internet of Things - Intermediate Module

You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• NonCommercial — You may not use the material for commercial purposes.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

About This Course

The Internet of Things (IoT) course covers information about internet protocol suites, different type
of connections, application layer protocols, services and use of microcontroller units. Learners will
acquire knowledge on the use, application and commercialisation of concepts pertaining to the broad
context of loT.

Format

The form of education is e-learning with aprrox. 10 hours of lessons, 10 hours of self-studying and 20
hours of practical activities. Weekly lessons include lectures, thematic videos and performing test
tasks. An important part of this course is performing final exam in the form of multiple choices quiz,
which contains answers based on study material. The course is set up in compliance with the ECVET
System with possibility to obtain the Certificate of attendance.

Who can take this course?

To enroll in this course you need to have successfully completed ‘INDEX: Industrial Expert - Basic
Module’.

The course has no specific prerequisites, but basic knowledge of Information Technology is beneficial.

It will be of particular interest to:

• Senior executives or development department managers of your enterprise interested in learning

about the Internet of Things;

• Professionals interested in the applications of the Internet of Things in their areas of expertise;

• Founders of high-tech startups;

• Young engineers of your company, who are already working on the development of specific solutions

of the Internet of Things;

• Educators teaching graduate and postgraduate courses focusing on the Internet of Things;

• Students or postgraduates interested in the Internet of Things.

Programme of the course

Internet protocol suite

• OSI model

• OSI model: Comparison with TCP/IP model

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

• TCP/IP model

Connections

• Introduction

• Wired solutions

• Short-distance wireless solutions

• Medium-distance wireless solutions

• Long-distance wireless solutions

Application layer protocols

• Introduction

• HTTP and CoAP

• Common formats found with HTTP

• MQTT

• Comparison of HTTP-REST and MQTT

Services

• Introduction

• Functions

• Providers and examples

Hands on with microcontroller units

• Microcontroller Units

• Arduino

• Programming Arduino for basic tasks

• Using Arduino in IoT projects

Course staff

Dr Fulvio Ratto
Fulvio received his M.Sc. degree in Physics from University of Trieste (Italy) in 2002 and his Ph.D.
degree in Energy and Materials Science from University of Quebec (Canada) in 2007. His current
interests lie at the crossroads of plasmonics and biomedical optics, and in particular the integration of

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

noble-metal components in bionic systems and photonic devices. Current position: Researcher
at Consiglio Nazionale delle Ricerche - Istituto di Fisica Applicata (Italy).
Course sections: Internet protocol suite, Application layer protocols, Services, Hands on with
microcontroller units

Dr Lucia Cavigli
Lucia received her M.Sc. degree in Physics from University of Florence (Italy) in 2002 and her Ph.D.
degree in Materials Science at Department of Physics of University of Florence (Italy) in 2006. Her skills
are in the field of photonics and nanostructured materials. Current position: Researcher at Consiglio
Nazionale delle Ricerche - Istituto di Fisica Applicata (Italy).
Course sections: Connections

Dr Filippo Micheletti
Filippo received his M.Sc. degree in Electronic Engineering from University of Florence in 2011 and his
Ph.D. in Information Engineering and Mathematical Sciences from University of Siena in 2016. His skills
are in the development of photonic technologies for applications in medicine and biology. Current
position: Researcher at Consiglio Nazionale delle Ricerche - Istituto di Fisica Applicata (Italy).
Course sections: Services

Dr Ilias Kalfas
Ilias is an Agronomist with a specialty in Plant Protection, holding a degree from Faculty of Agriculture
of Aristotle University of Thessaloniki. He holds a Ph.D. from University of London, Diploma of Imperial
College and M.Sc. in Production Organization and Quality Management in the Food Industry. Current
position: Project Leader regarding plant production projects of Strategic Programs Management
Office of the American Farm School (Greece).
Course sections: Connections - Medium-distance wireless solutions

Dr Nikos Tsotsolas
Nikos holds a Diploma in Production Engineering and Management from Technical University of Crete,
Greece (1997), a M.Sc. in Operational Research (2001) from the same University and a Ph.D. in
Statistical Science (2009) from University of Piraeus. From 2006 to date, he is member of the Board of
the Hellenic Operational Research Society (HELORS). His research interests fall into the areas of multi-
criteria analysis, decision support systems, service quality, and post-optimality analysis in
mathematical programming. Current position: co-founder and R&D Consultant of Green Project
SA (Greece).
Course sections: Connections - Medium-distance wireless solutions

Results

As the result of completing the Internet of Things- intermediate level course, learners will know:

• The key aspects of communication protocols and abstraction layers and the key elements of OSI and

TCP/IP models

• The key features of the principal kinds of connections in communication technology

• The key features of the principal application-layer protocols found in communication technology

https://www.cnr.it/en
https://www.cnr.it/en
https://www.cnr.it/en
https://www.cnr.it/en
https://www.afs.edu.gr/en/
http://www.green-projects.gr/PublicPages/HomePage.aspx
http://www.green-projects.gr/PublicPages/HomePage.aspx

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

• The key features of the principal kinds of online services

• The key features of microcontroller units and basic elements of C programming language

Competences

By completing the Internet of things intermediate level course, learners will be able:

• to identify the key features of internet protocol suite

• to make a decision on the best kinds of transports for a certain IoT application

• to make a decision on the best kinds of application layer protocols for a certain IoT application

• to make a decision on the best kinds of online services for a certain IoT application

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Internet of Things - Intermediate Module

Internet protocol suite

OSI model

Introduction

Communication is the most distinctive and critical part of the Internet of Things. We begin our journey

through this exciting topic with a rather theoretical description of the various components needed to

establish communication across a network of things, humans, or both. In the next sessions, we will

essentially come back and analyse these components one by one from a much more practical

perspective. But here, we focus on their hierarchy and mutual interactions, which will set the ideal

background to make our journey seamless.

Quiz

Imagine that someone lands on Mars and, much to their surprise, finds a crowd of aliens that,

incidentally, look pretty different from earthlings.

What sequence of steps could lead to the commencement of communication, in your opinion?

☐ Speak slowly and loudly.

☐ Make great sweeping gestures.

☐ First establish agreed-upon standards and protocols in a stack, i.e. how to address and make sure

to deliver messages to destination first, then what means to use, such as sound or visuals or contact,

etc., how to arrange a conversation, how to create a dictionary, etc.

☐ First establish agreed-upon standards and protocols in a stack, i.e. what means to use first, such as

sound or visuals or contact, etc., then how to address and make sure to deliver messages to

destination, how to arrange a conversation, how to create a dictionary, etc.

Standards and protocols are a fundamental issue in communication systems, as is the use of script and

language in human conversation. The Open Systems Interconnection (OSI) model is a result of the

Open Systems Interconnection project of the International Organization for Standardization (ISO). Its

formulation establishes a theoretical construction that separates the complex set of functions needed

in communication systems into different layers, with the intent of providing a consistent framework

for the development of specific protocols and fostering their interoperability. So, for instance, in

human conversation, script and language may be different layers, say layer 1 and layer 2. Print and

cursive alphabets would be alternative examples of layer 1 protocols. English or Italian idioms would

both serve as layer 2 protocols. In principle, any combination of layer 1 and layer 2 protocols would

be feasible. However, this simple example already suggests limitations in the extent of

interoperability. It may be difficult to use hiragana symbols to transcribe a Russian poem.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The OSI model consists of 7 layers, where layer n provides services to layer n+1 and rests on those of

layer n-1. For instance, if a layer n protocol was about the identification of a path in a network, layer

n+1 protocol may include the transportation of a packet of information through that network, and

layer n-1 protocol may ensure the connection from single node to node. Two entities of the same layer

N on both ends of the communication link are called layer N peers and exchange so-called protocol

data units (PDUs). Each layer N PDU is made of a payload called service data unit (SDU) plus headers

or footers that provide instructions about the layer N protocol in use. In practice, communication

begins with a PDU composed at layer 7. Such layer 7 PDU is passed to layer 6, where it is treated as a

layer 6 SDU and concatenated with headers and footers to make a layer 6 PDU, etc. On the other side

of the link, the layer 1 PDU is stripped of its headers and footers to obtain a layer 1 SDU. Such layer 1

SDU is passed to layer 2, where it is processed as a layer 2 PDU, etc.

The OSI model was devised in the late 70s and early 80s as a response to an emerging need for

interoperability among a variety of communication protocols that were under construction in those

days. It was conceived more as a set of guidelines for future protocols rather than the standardization

of a suite of best practices in use, and has probably never really come into effect. However, it still

represents a useful reference to understand the hierarchy of issues in communication protocols.

Among the principal problems with the OSI model, we mention some reservations on the general

concept for strict layering, and the need to accommodate inter-layer and sublayer functions, such as

those associated with management and security. For instance, in wireless communication, the

Physical Layer and the Data Link Layer outlined in the next two units need to frequently exchange

information in order to handle flaky connections and to avoid wasting overall resources.

Figure: overview over OSI model, CC BY-SA by INDEX consortium

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Layer 1: Physical Layer

Imagine a group of children playing whisper game. Maybe it goes without saying, but their first

decision will be on what physical means to use to exchange messages, such as sounds emitted with

voice and received with hearing. But it may also be visuals emitted with fingers and received with

sight, as in sign language. Or handwritten notes, etc.

Figure: Analogy to Layer 1 of OSI model CC BY-SA by INDEX consortium

Layer 1 of the OSI model is the so-called Physical Layer, which practically receives raw sequences of

logical bits from Layer 2 and takes care of their physical encoding into voltage, light, or sound, etc. and

transmission through a medium as a coaxial cable, optical fiber, or radio wave, etc., as well as its

decoding the other way around. It answers the question how to encode and decode logical bits into

and from a physical signal.

The features defined in a Physical Layer protocol include the physical parameters of the transmission

medium, such as shape, size and number of pins of a connector and its mechanical specifications; their

functional features, such as the meaning of each pin in simplex, half duplex or full duplex

communication; the electrical, optical, or acoustical, etc. translation of the logical levels into a so-

called line code, which includes voltage, intensity, duration, bit rate, etc. of a physical signal; coupling

of this signal to a transmission medium, signal processing, error control over unreliable or noisy

channels, etc.

In particular, the transmission media may be electrical conductors as twisted pairs and coaxial cables;

optical systems as multimode or single-mode fibers or air; wireless systems as radio or microwaves ;

or others, such as acoustic systems or many more. Important features of this media include their

attenuation, which is the intensity of signal lost per unit of distance travelled, their susceptibility to

signal degradation due to noise or interference or to signal distortion; their bandwidth or maximum

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

bit rate; their cost; need for maintenance, etc. The same medium may host different bands, and, in

this case, its features may depend from band to band. This is the case, for instance for radio waves.

Figure: position of Layer 1 in OSI model CC BY-SA by by INDEX consortium

Layer 2: Data Link Layer

The second question in front of our children playing the whisper game is how to exchange messages

from one child to the next. Maybe by whispering to each other. But how to identify the right

neighbour? And how to manage in the event of more children wishing to address the same player at

the same time?

Figure: analogy to Layer 2 of OSI model CC BY-SA by INDEX consortium

Layer 2 of the OSI model is the so-called The Data Link Layer, which receives data packets from Layer

3 and takes care of their encapsulation into so-called frames, which are short sequences of bits, and

node-to-node transfer within the same network segment over the Physical Layer. It answers the

question of how to manage communication between two nodes on the same network level, in terms

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

of medium access, local addressing, flow control and sometimes low-level error checking and

retransmission.

The Data Link Layer is actually subdivided into two sub-layers that really interact as separate layers, in

the sense that any one protocol in the first sublayer may potentially interoperate with any other

protocol in the second sublayer.

The lower sublayer is the Medium Access Control (MAC) sublayer. Its main purposes are to regulate

the access of multiple nodes to a shared communication channel by minimizing or managing the

occurrence of collisions and loss of data resulting from a simultaneous occupation of the same

medium; and to implement operations for physical addressing. There are two main types of protocols

for multiple access control based on distributed or centralized algorithms. In distributed algorithms,

collisions may occur but appropriate mechanisms are in place to reduce their probability and

retransmit collided frames. For instance, it may be decided that, before transmitting, each node waits

a random delay after the shared medium has become free, so that it would take an accidental same

hold for collisions to occur. In centralized algorithms, collisions may be hampered by strict

scheduling according to rules established during network initialization. At this level, the format of the

frame is encapsulated with headers and footers containing instructions as the physical addresses of

sender and recipient.

The higher sublayer is the Logical Link Control (LLC) sublayer, which covers functions as asynchronous

or synchronous encoding in serial communication, flow control and error control. In serial

communication, asynchronous transmission requires start and stop signals to delimit each character,

whereas synchronous transmission functions by frames and entails the addition of a header for

synchronization. Flow control serves to harmonize the bit rate for a faster sender to avoid

overwhelming a slower recipient and requires some feedback mechanism to be in place. Error control

may be implemented with different quality at this level and cooperate with similar functions over

more layers. The simplest control is parity as it may be implemented by the addition of a bit

representing whether the number of ones or zeros in the frame was even or odd. Of course, parity

may easily fail in the presence of multiple errors per frame over a poor connection. A checksum is a

more robust solution to encode the overall number of ones or zeros. Finally, the request for

acknowledgements is the safest solution to check the reception and integrity of entire frames. In the

case of errors, frames may be just abandoned or discarded and resent according to the protocol in

use, and whether to prioritize reliability or speed.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: position of Layer 2 in OSI model CC BY-SA by INDEX consortium

Layer 3: Network Layer

The third question in front of our children playing the whisper game is how to identify the best path

for a message to travel from origin to destination across multiple boundaries. Just so. They have

decided to scatter across a large field instead of forming a line! And so, there may be multiple options.

Some choices may be better in terms of length, others in terms of congestion.

Figure: analogy to Layer 3 of OSI model CC BY-SA by INDEX consortium

Layer 3 of the OSI model is the so-called Network Layer, and serves to route and forward data packets

from Layer 4 across different networks by using the services provided by the Data Link Layer. It

answers the question how to identify the best pathway and manage the transmission of data across

heterogeneous networks.

Protocols in the Network Layer deal with different functions. Routing means determining the best

route for data transmission over the network from the sender to the recipient address. Every host in

the network is denoted by a unique address that determines its location and is normally assigned from

a hierarchical system. In most cases, routing is dynamic and depends on parameters as network

conditions, the use of routing tables and service priorities. Some protocols require that a fixed and

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

dedicated communication channel be in place before two hosts can start exchanging data according

to higher layer functions; other protocols instead simply deliver datagrams to destination without

prior connection nor guarantee, and most transport ends at this layer. Functions sometimes present

are congestion control or quality of service guarantee by reserving resources over all nodes along the

pathway. Forwarding means receiving a packet on one port, storing it and retransmitting it on another

port. This function is present in all nodes and may entail the combination of different Data Link Layer

protocols as well as packet splitting and reassembling, when received packets are larger than the

Maximum Transmission Unit available across a node. In addition, in geographic networks (WAN or

MAN), pricing can be managed and calculated on the basis of connection time or other parameters.

The Network Layer is the last level present in network switches or internal nodes, while the upper

architectural levels are present only in terminal nodes.

Figure: position of Layer 3 in OSI model CC BY-SA by INDEX consortium

Layer 4: Transport Layer

The fourth question in front of our children playing the whisper game is how to make sure that

messages received at destination correspond to those sent from origin. This may be the funniest part

of the story! The sender and the recipient of a message do not care about its exact path and all

underlying details, at this level. They may just wish to find a way to verify the integrity of their

communication.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: analogy to Layer 4 of OSI model CC BY-SA by INDEX consortium

Layer 4 of the OSI model is the so-called Transport Layer, which receives and segments messages from

Layer 5 and provides for their reliable transmission from end-point to end-point over the Network

Layer, according to different classes of services. It is the first layer that solely involves the end-points

on both sides of the communication channel.

The Transport Layer may offer multiple services, but none is mandatory and each protocol may

provide a different combination of features. For connection-oriented services, such as those entailing

the exchange of feedback and acknowledgments, it takes care of creating a persistent connection,

which it then closes as soon as no longer needed. It verifies and ensures correct reordering of data

segments by the recipient, which may follow different pathways over the Network Layer. It provides

for reliable transfer by making sure that all segments sent by the sender are received by the recipient

and provides for their retransmission in the form of corrupt files as needed. It provides for flow control

on request of the receiver and for congestion control when the sender identifies a problem in the

network, by optimizing the data rate. In some cases, it may impart a byte orientation, in order to

streamline the communication as a stream of bytes rather than segments. Last but not least, it may

dictate multiplexing by establishing multiple connections between the same two hosts through the

use of virtual ports.

Protocols in this layer are divided into five classes numbered from 0 to 4 according to the functions

implemented in their provisions. Class 0 provides the least features and is suited for the most reliable

networks. Class 1 ensures basic error recovery. Class 2 adds multiplexing. Class 3 features full error

recovery and multiplexing. Class 4 adds error detection, and may be recommended for the most

unreliable networks, such as the Internet.

The name of this layer may be misleading, because it does not actually implement any physical or

logical transportation of data, which are covered by lower architectural levels, but rather makes up

for their lack of reliability and closes the loop, by implementing functions that ensure the overall

quality of service from end-point to end-point.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: Position of Layer 4 in OSI model CC BY-SA by INDEX consortium

 Layer 5: Session Layer

The fifth question in front of our children playing the whisper game is how to establish a

communication channel that may support a full conversation made of multiple messages sent back

and forth. Maybe without the need to verify the identity of the sender and the recipient each time,

which may consume most of their playtime with boring procedures!

Figure: analogy to Layer 5 of OSI model CC BY-SA by INDEX consortium

Layer 5 of the OSI model is the so-called Session Layer, which offers services to Layer 6 by setting the

rules, establishing, managing and terminating a dialogue between two hosts over the Transport Layer.

This layer transcends the notion of a sender and a recipient and connects two hosts in a semi-

permanent communication channel, which may be simplex, half-duplex, or full-duplex.

The Session Layer establishes procedures for starting, checkpointing, restarting, suspending and

terminating a session with a graceful close, for synchronizing activities on both sides and for

negotiating the quality of service implemented during the dialogue over the Transport Layer.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Functions such as authentication and authorization belong to this level. So-called sync points are used

for resetting and recovering a session in the case of problems. The Session Layer plays an especially

critical role in application environments that use remote procedure calls in the context of distributed

computing.

Figure: position of Layer 5 in OSI model CC BY-SA by INDEX consortium

Layer 6: Presentation Layer

The sixth question in front of our children playing the whisper game is how to encode their messages.

If they were talking animals, for instance, it may be funny to zip their messages as noises, which nosy

adults may be unable to understand! Or maybe they may want to play draughts, and just need

standards to understand each other on what pieces to move and where across the chessboard.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: analogy to Layer 6 of OSI model CC BY-SA by INDEX consortium

Layer 6 of the OSI model is the so-called Presentation Layer, and provides Layer 7 with the facility to

encode and decode data in a format that may be suitable for communication through the Session

Layer. The translation may include multiple steps for serialization of complex data structures into flat

byte-strings, compression and cryptographic encryption as well as the reverse operations on the other

side of the communication channel.

The Presentation Layer allows the user applications on the two ends of the communication channel

to use different semantics and syntax without worries, for instance one applying EBCDIC and the other

using ASCII to represent the same characters, by providing the appropriate conversion between

multiple formats. Although it may also belong to the Data Link and Physical Layers, security by

cryptographic encryption is done at this level, in order to avoid processing all headers and footers

concatenated at lower layers, when the payload coming from the user applications may be the only

sensitive information, and so to save computational resources on reception. However, in real

implementations of network architectures, where it may be desirable to protect more data, security

may be implemented at multiple levels by encrypting relevant overhead information. In this case, the

initial payload may even undergo multiple consecutive codifications. The same applies to data

compression. It is often useful to compress the payload coming from the user applications, but it may

be harmful to zip the overhead information added at lower levels, because a lossy compression may

induce a fatal loss of integrity and jeopardize the entire communication flow. Also, in this context,

compression done at this level imposes less computational burden on reception.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: position of Layer 6 in OSI model CC BY-SA by INDEX consortium

Layer 7: Application Layer

The final question in front of our children playing the whisper game is how to structure their

communication at the highest level. For instance, they may decide that some children are there to

ask questions, and others to look them up in a textbook and reply as soon as they find an answer.

Great for a written exam! Or that some children are collecting messages on different topics, which

they are forwarding to anybody who has shown interest therein, etc. They are not yet considering

what to talk about at this level, but just creating a functional infrastructure to support a variety of

games. And now the fun is ready to start!

Figure: analogy to Layer 7 of OSI model CC BY-SA by INDEX consortium

Layer 7 and last of the OSI model is the so-called Application Layer, and is the one closest to the end

user and its software interface. It exploits services provided by the Presentation Layer to implement

specific behaviours in software applications that involve certain communication tasks.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

It is still not the final user application, like e.g. a web browser or a Mail User Agent, but the set of

underlying tools needed to perform fundamental and common communication tasks, such as

identifying remote resources and communication partners, transferring files, etc. The final user

application goes beyond the scope of this layer and the entire stack of OSI protocols, which stop at

the creation of the infrastructure needed for general communication.

Figure: position of Layer 7 in OSI model CC BY-SA by INDEX consortium

Exercise

Which of the following statements makes sense?

☐ In an IoT network, the protocols in the various layers of the OSI model had better be chosen in a

consistent manner.

☐ In an IoT network, like any other network, the protocols in the various layers of the OSI model are

independent of each other, from a practical perspective.

☐ In an IoT network, there may be no Application Layer nor Presentation Layer, because there may

be no human interface at all.

☐ In an IoT network, the lower layers of OSI model may include sensors and actuators for cyber-

physical integration.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

OSI model vs TCP/IP model

The Internet Protocol Suite is often named after its most representative protocols as the TCP/IP

model, and is a framework alternative to the OSI model that represents the standard de facto for the

Internet. With respect to the OSI model, it places much less emphasis on layering and the

encapsulation of functions in a hierarchical stack, and takes a more pragmatic and lightweight

approach to the establishment of a global communication network. However, its protocols may still

broadly be assigned to four levels that map rather well to those of the OSI model both in terms of

inherent scopes and mutual interactions.

The TCP/IP Link Layer corresponds to the OSI Data Link Layer and may also include functions of its

Physical Layer, although the underlying hardware implementation is more assumed than prescribed,

and also some components at the interface with its Network Layer.

The TCP/IP Internet Layer covers the largest part of the OSI Network Layer.

The TCP/IP Transport Layer corresponds to the OSI Transport Layer plus some functions of its Session

Layer as the so-called graceful close.

Finally, the TCP/IP Application Layer maps to the OSI Application Layer, Presentation Layer and most

of Session Layer, although formatting and presenting data is more left to libraries and application

programming interfaces than specified in protocols within the TCP/IP stack.

Figure: comparison between OSI and TCP/IP models CC BY-SA by INDEX consortium

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Link Layer

The Link Layer is the first level in the TCP/IP model and deals with local network connections among

all hosts accessible before traversing routers. Its functions include framing, transmitting and receiving

data packets over a physical medium. It specifies procedures to identify and communicate to specific

hosts through Medium Access Control (MAC) addresses, and operates through the drivers or the

firmware of dedicated network cards or chipsets. However, the presence of an underlying physical

level is assumed as an implicit provision, and so are its tangible parameters, such as distance,

bandwidth, etc.

A representative example of protocol within this layer is the Neighbor Discovery Protocol (NDP), which

is specifically geared at providing services to the Internet Protocol version 6, such as identifying hosts

and routers on the same local network, retrieving their parameters, such as their Maximum

Transmission Unit (MTU), and mapping their physical addresses to their network addresses.

Figure: position of Link Layer in TCP/IP model CC BY-SA by INDEX consortium

Watch the following video by RIPE CNN for a short description of NDP.

Neighbor Discovery Protocol

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

Internet Layer

The Internet Layer is the second level in the TCP/IP model and deals with the process of routing

datagrams across potentially different networks. It defines an approach to identify and address hosts

and to unreliably forward datagrams from source until destination from router to router by using a

hierarchical system of addresses.

The most important protocol in this layer is the Internet Protocol (IP), which is responsible for

encapsulating data into datagrams and addressing host interfaces, in order to route packets from

source to destination across multiple networks. Datagrams are made of an IP header and a payload.

The IP header includes the IP addresses of source and destination, and other metadata needed for

delivery. IP addressing entails the assignment of IP addresses and other parameters to host interfaces.

The address space is subdivided into subnetworks by the use of prefixes. All hosts and routers

collaborate toward the process of IP routing. In particular, routers are responsible for transporting

packets across network boundaries, and communicate via dedicated procedures according to network

topology. The first really popular version of the IP protocol was number 4, which reserves 32 bits for

addressing, thus accommodating a maximum of around 4.3 × 109 hosts. In order to overcome this

limitation, which has become stringent over the years, beginning from 2006, IP protocol version

number 6 has started to complement and replace its predecessor. With an 128-bit address space, this

https://www.youtube.com/watch?v=A3LFt7CHpgs

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

version provides for as many as around 3.4 × 1038 IP addresses and is fit to support current trends as

the Internet of Things.

Figure: position of Internet Layer in TCP/IP model CC BY-SA by INDEX consortium

Watch the following video by TechQuickie on the main differences between IPv4 and IPv6, and main

advantages and possible barriers met in the relevant transition.

Internet Protocol - IPv4 vs IPv6 as Fast As Possible

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

Transport Layer

The Transport Layer is the third level in the TCP/IP model and establishes the procedures for host-to-

host connectivity independent of both the overlying application design as well as the underlying

network architecture. Functions that may optionally belong to this level include data segmentation,

flow control, congestion control, application addressing via virtual ports, and error control. The use of

virtual ports is a convenient tool to create communication channels dedicated to certain processes or

applications. For many applications port numbers have been standardized, so that, for instance,

clients requesting certain services may directly inquire servers through the appropriate ports without

additional mediation.

Protocols at this level may be connection-oriented, as the Transmission Control Protocol (TCP), or

connectionless, as the User Datagram Protocol (UDP).

The TCP protocol ensures high reliability at the expense of lengthy latency, and compensates for the

lack of dependability of the IP protocol as a best-effort system. It solely concerns the terminal hosts

and runs at the level of their operating systems. Its main features are that it is connection-oriented

and includes the creation, maintenance and eventual closure of a semi-permanent communication

channel between both hosts; that it guarantees the delivery of data segments by implementing

https://www.youtube.com/watch?v=aor29pGhlFE

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

acknowledgments; that it supports a full-duplex flow of byte; that it creates and addresses data

segments to ports dedicated to specific applications, such as port 80 for the Hypertext Transfer

Protocol (HTTP); that it guarantees the receipt of data segments in the right order and only once,

through acknowledgments and timeout retransmissions; that it offers error checking through a

checksum field encoded in its Protocol Data Unit; that it features flow control between both terminals

and congestion control over the network; that it supports multiplexing through multiple ports. TCP is

often implemented in combination with applications where reliability is a priority, such as the File

Transfer Protocol (FTP), the Simple Mail Transfer Protocol (SMTP) or HTTP.

In a sense, the UDP protocol is a perfect counterpart to TCP for applications where minimal latency is

a priority and the loss of data segments may be tolerable, such as in real-time audio and video

streaming, or in cases when the addition of lengthy headers would be disproportionate. It is

transaction-oriented for simple query-response protocols, and stateless, meaning that, for instance,

servers retain no information on their clients, which helps streaming media to support a large number

of guests. Error control is available as a simple checksum, but feedback and retransmission are totally

absent. The lack of retransmission and associated delays is also perfect for real-time applications such

as Voice over IP, online games, and many others using the Real Time Streaming Protocol (RTSP).

Of course, there are many more protocols in this layer, but TCP and UDP cover the vast majority of

uses over the Internet.

Figure: position of Transport Layer in TCP/IP model CC BY-SA by INDEX consortium

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Watch the following video by Cisco for an overview over the main differences and applications of TCP

and UDP.

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

Application Layer

The Application Layer is the fourth and topmost level in the TCP/IP stack and provides high-level

functionalities for implementation in software applications by assuming the existence of underlying

channels of communication. At this level, the TCP/IP model makes a distinction between support

protocols and user protocols, where support protocols maintain the network infrastructure, such as

the Domain Name System (DNS) for assigning host names and their resolution into IP addresses, and

user protocols define actual end-user applications. There are many user protocols tailored to different

purposes. Common examples are the File Transfer Protocol (FTP) to exchange data files in a client-

server architecture; the Simple Mail Transfer Protocol (SMTP) to exchange emails among dedicated

servers and for a client to send emails across its server; the Internet Message Access Protocol (IMAP)

and the Post Office Protocol (POP) for a client to receive emails from its server; the Hypertext Transfer

Protocol (HTTP) to communicate among hosts in a client-server architecture; and the Message Queue

Telemetry Transport (MQTT) protocol for an alternative client-broker architecture of particular

relevance in contexts such as the Internet of Things. We will come back to some of these protocols in

later sessions of this course.

https://www.youtube.com/watch?v=MMDhvHYAF7E

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The TCP/IP model does not establish specifications for presenting data, and does not entail additional

layers between the application and transport levels, as in the OSI model. Such functions are the realm

of libraries and application programming interfaces implemented at application level. Data encoded

at application level are then directly passed to the transport level for processing through relevant

protocols, such as TCP or UDP in most cases. In principle, application level protocols are unaware of

the underlying procedures, but may have knowledge of key features of the Transport Layer protocols

in use, such as IP addresses and port numbers of the end-points. For instance, HTTP conventionally

uses server port 80, and Telnet number 23. In turn, Transport Layer and lower-level protocols are

unconcerned with the contents passed by the Application Layer protocols. Routers and switches

primarily transmit the encapsulated traffic without parsing its payload. However, some firewall and

bandwidth throttling services need to examine and interpret the application data, in order to ensure

safety and quality.

We conclude this unit by remarking, as we have seen here and in previous units by means of a few

real-world examples, that, within the Internet Protocol Suite, the interoperability between protocols

at different layers is more a theoretical possibility than a practical option. So, for instance, it would be

unsafe to run SMTP on top of UDP over geographical distances, or unfeasible to couple RTSP to TCP.

For these reasons, layering in the context of the TCP/IP model is not a straitjacket, but rather a

resilient and convenient framework to classify the entities needed in communication.

Figure: position of Application Layer in TCP/IP model CC BY-SA by INDEX consortium

Exercise

Which of the following statements is correct?

☐ In a typical configuration, TCP may run over UDP, which in turn may run over IPv6.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

☐ In a typical configuration, IMAP may run over HTTP, which in turn may run over IPv6.

☐ In a typical configuration, IPv6 may run over HTTP, which in turn may run over TCP.

☐ In a typical configuration, HTTP may run over TCP, which in turn may run over IPv6.

Connections

Introduction

How to connect "things" has clearly a fundamental role in the context of the Internet of Things. When

talking about link-level connections, it includes both wired options, such as Ethernet, and wireless

solutions, such as Bluetooth or Wi-Fi.

The choice of the most suitable connection technology is one of the most important decisions to make

when planning to develop any kind of IoT solution in different environments, whether it be a factory,

home or farm, etc., since network connectivity is an essential part of the story.

But the assessment of which type of network connectivity is the best for a given IoT application is a

complex issue, due to the multitude of different technologies that are available, ranging from Ethernet

to wireless standards like cellular, Wi-Fi or Bluetooth, which are all possible options to connect

sensors, actuators or smart devices. In some cases, a combination of different technologies may be

the best solution.

The best choice depends on several factors, including the distance or range needed, the connection

speed desired, or the power consumption of the edge devices. The ideal transport would consume

very little energy, would have an unlimited range and would have high bandwidth for the transmission

of large amounts of data. But since this option does not exist, each connectivity option will represent

a trade-off between POWER, RANGE and BANDWIDTH.

In many practical contexts, IoT nodes should also enjoy:

● Limited processing power

● Possibility of battery supply and support for sleep mode operation

● Robust, suitable for harsh environments and weatherproof

● Easy to set up and maintain

● Low cost

Taking into account these parameters, the various connection options can be divided into three main

groups:

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@chapter+block@043d5baacb174da7af4473d84acc1997

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

1. Short-distance, high bandwidth, low power consumption

Aim: to exchange a lot of data at reduced power consumption.

To fulfill these conditions, it is necessary to reduce the distance. Connection modalities like

WiFi, Bluetooth and Ethernet belong to this group. Ethernet is a wired connection, so its range

is limited by the length of the cables. WiFi and Bluetooth are both wireless connections with

lower power consumption than cellular and satellite, with comparable bandwidth but much

lower range.

2. Medium-distance, low bandwidth, low power consumption

Aim: to exchange smaller amounts of data over longer distances, such as for agriculture 4.0.

Connectivity options that combine low bandwidth with low power consumption but

relatively long range are the best options. Solutions like low-power wide-area networks

(LPWAN) are included in this group.

3. Long-distance, high bandwidth, high power consumption and costs

Aim: to exchange a lot of data, such as videos, over geographical distances, without

limitations on power consumption or costs.

Cellular and satellite technologies belong to this group. For instance, smartphones are able to

receive and transmit large amounts of data over long distances, but need to be charged every

1-2 days at best.

The overall features of the connection options for the IoT are summarized in the following figure.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: data rate and cost vs connection range for different connection technologies, CC BY-SA by INDEX consortium

Wired solutions

Ethernet

As mentioned in the previous unit, there is no such thing as a best data-link solution for all IoT

technologies.

The best choice depends on the particular situation and the specific application.

In some cases, a wired network can still be the best option, with the Ethernet standard representing

the most widespread technology.

In this case, the computer or other device is connected to a Digital Subscriber Line (DSL) via a network

gateway or router through an Ethernet cable (RJ-45 standard). If phone lines, power lines, and coaxial

cable lines are already available, this is an easy way to get plugged in, and often, even wireless

networks are eventually connected to a wired network at some point!

Here are some of the benefits of Ethernet:

● Worldwide universality.

● High speed: wired connections are less affected by factors like distance or proximity to other

devices, and this enables wired connectivity to be much faster than wireless counterparts.

Gigabit Ethernet is now available on many routers with data speed up to 1 Gbit/s, but even

classic Ethernet has better high-speed performance than Wi-Fi (802.11b/g).

● Reliability: Ethernet is not susceptible to interference from other wireless protocols and is

less prone to dropped connections than wireless protocols.

● Range: up to 100 meters on a single cable.

● Security: wired connections are usually housed behind your Local Area Network (LAN)

firewall, and hence allow for complete control over the communication flow. This means

there is no broadcasting data that can be hacked into.

The limitations of Ethernet are:

● Need for a permanent cable connection.

● High power consumption.

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@fda7668eba934df9a20a41144af8e6ac

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: some examples of applications of Ethernet for the IoT, CC BY-SA by INDEX consortium.

Typical uses of the Ethernet standard include all cases when one does not need a lot of range, but to

transfer large amounts of data, such as:

● Voice over Internet Protocol (VoIP) applications,

● Game systems,

● Permanently installed industrial equipment,

● Applications that require high-reliability control like industrial control, robotics or medical

uses, etc.

● Devices / environments, such as nuclear power plant controls, military networks or

computerized medical equipment that need secure networks. An example is air gapped

computers or networks, i.e. systems that are physically isolated from the Internet.

Pros and cons of Ethernet vs wireless systems are recapped in the following YouTube video.

An example of practical use of Ethernet in the IoT for Process Automation is shown in the following

video.

What is Ethernet? Ethernet vs Wi-Fi

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

An example of practical use of Ethernet in the IoT for Process Automation is shown in the following

video.

IoT Solutions for Process Automation

https://www.youtube.com/watch?v=i2qiNAVfQRw

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

Short-distance wireless solutions

Wi-Fi

Wi-Fi is by far the most commonly used wireless technology. It is present everywhere, providing

ubiquitous access to the Internet in many different environments, such as homes, office buildings,

academia and schools, campuses, residential homes, public buildings and so on. Wi-Fi is based on IEEE

802.11 standards, and the Wi-Fi Alliance, a non-profit association, guarantees the standardization and

compatibility of commercial devices. It can be used to connect devices, sensors and actuators in small

networks, or to connect systems to the Internet through Access Points.

However, despite their wide diffusion, interoperability and high bandwidth, Wi-Fi networks are not

always the optimum for IoT applications, especially when the amount of data exchanged is not so big,

but longer range, power autonomy, and reliability are required.

For these reasons, in some applications where power can be wired to the device (e.g. a thermostat),

or routinely recharging a battery can be feasible (e.g. a smartphone), and the range is limited (indoor

applications), Wi-Fi devices may be ideal for implementation in an IoT network, while for open air or

remote applications, other solutions may be more preferable.

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@330bcac737f4466f9899d76d4d3a5298
https://www.wi-fi.org/
https://www.youtube.com/watch?v=l4gPEFJajtU

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The main features of Wi-Fi are summarized in the next table:

Table: Wi-Fi main features

Range

Wi-Fi networks are classified as short-distance range. The typical point-

to-point transmission range of Wi-Fi access points is between 30 m

indoors to 100 m outdoors. In order to extend Wi-Fi coverage, it may

be needed to install more access points and to create a wireless local

area network (WLAN)

Power Consumption

Wi-Fi features a high-power consumption with respect to other

common standards, such as Bluetooth or Low-Power Wide-Area

Networks.

Frequency and data

rates

2.4 GHz and 5 GHz radio frequency (RF) bands. The latest generation of

Wi-Fi devices, based on the 802.11ax standard (Wi-Fi 6 devices),

support a maximum link-rate of 600-9608 Mbit/s. While the majority

of devices present in the market at the time of writing are based upon

the 802.11ac standard (Wi-Fi 5 devices) that support a maximum link-

rate of 433-6933 Mbit/s. Older equipment that support 802.11n

standard (Wi-Fi 4 devices) exhibit a maximum link-rate of 72-600

Mbit/s. These data rates are ideal for data-intensive applications such

web surfing, or audio or video streaming.

Reliability

Wi-Fi uses unlicensed RF bands within the 2.4GHz and 5GHz range.

These frequencies are crowded and may raise reliability issues that may

practically limit the range of the gateways to a few metres .

Interoperability

Wi-Fi is the most widespread wireless technology, thus assuring the

universal interoperability of systems. Already in 2016, the Wi-Fi

Alliance, which manages the certification requirements to ensure

certain standards of interoperability, announced that Wi-Fi

shipments had reached 12 billion units (https://www.wi-fi.org/news-

events/newsroom/wi-fi-device-shipments-to-surpass-15-billion-by-

end-of-2016).

Component

availability and cost

Wi-Fi modules are widely available from dozens of vendors for a few

dollars per unit.

https://www.wi-fi.org/news-events/newsroom/wi-fi-device-shipments-to-surpass-15-billion-by-end-of-2016
https://www.wi-fi.org/news-events/newsroom/wi-fi-device-shipments-to-surpass-15-billion-by-end-of-2016
https://www.wi-fi.org/news-events/newsroom/wi-fi-device-shipments-to-surpass-15-billion-by-end-of-2016

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Security

Security issues are a challenge for Wi-Fi connections. Access to WiFi

networks requires authentication in order to control usage. Moreover

it requires securing the data from unauthorized access by using

encryption.

Wi-Fi HaLow is a recent and customized version of Wi-Fi specifically designed for IoT applications. It

has been developed to overcome some of the limitations of Wi-Fi standards.

Wi-Fi HaLow operates in a spectrum of RF frequencies below one gigahertz, and so offers longer range

and lower power consumption to fit most of the requirements of IoT scenarios with the advantage of

Wi-Fi certification.

Highlights of this version are summarized in the next table.

Table: Wi-Fi HaLow main features.

Features Benefits

● 1 GHz operation band;

● Power saving modes;

● Native IP support;

● Wi-Fi security.

● Longer range (about 1 Km) and better penetration

through walls and obstacles;

● Longer life for batteries (months or even years);

● No need for proprietary hubs or gateways.

Exercise

Why may the new Wi-Fi HaLow standard overcome some of the limitations of former Wi-Fi standards

for the IoT?

☐ Wi-Fi HaLow allows higher data rates by maintaining the same power consumption as standard Wi-

Fi, as well as compatibility with existing Wi-Fi networks.

☐ Wi-Fi HaLow operates below one gigahertz, thus offering longer range and lower power

consumption than standard Wi-Fi, with the advantage of easy integration with existing Wi-Fi

networks.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

☐ Wi-Fi HaLow operates below one gigahertz, offering longer range and lower power consumption

than standard Wi-Fi, at the cost of incompatibility with existing Wi-Fi networks.

☐ Wi-Fi HaLow operates below one gigahertz, thus offering longer range and compatibility with

existing Wi-Fi networks, at the expense of higher power consumption than standard Wi-Fi.

The following video is about a practical example of one of the first wireless security camera on the
market based on Wi-Fi Halow, which allows for an extended range while consuming very little power.

The First WiFi HaLow Security Camera

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before.

Short-distance wireless solutions

Bluetooth and Bluetooth Low Energy (BLE)

Bluetooth technology is a short-range communication protocol widely employed for connecting IoT

devices.

The Bluetooth standard was originally conceived at Ericsson back in 1994 as a way to replace RS-232

telecommunication cables by using low-power radio frequencies. The name "Bluetooth" comes from

the second King of Denmark, Harald "Bluetooth" Gormsson, who became famous for having united

the peoples of Denmark and Norway.

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@330bcac737f4466f9899d76d4d3a5298
https://www.youtube.com/watch?v=LDiBYeDFI8Y

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The certification of Bluetooth standards is controlled by the non-profit, non-stock

corporation Bluetooth Special Interest Group (Bluetooth SIG), founded in September 1998.

Bluetooth protocol is classified as a short-range (up to 100 m), high power consumption, even

if significantly less than Wi-Fi, and is particularly handy to connect devices like keyboards, headphones

and so on. Classic Bluetooth operates in the same 2.4 GHz unlicensed spectrum as Wi-Fi, and is

designed for continuous data transfer in one-to-one communication mode, with data rate up to 2

Mbps.

In order to overcome its limitations on power consumption, a new protocol was introduced in

2011, named Bluetooth Low Energy (BLE) or Bluetooth Smart, which significantly improves the

energy use of connected devices. By activating the connection only when necessary and maintaining

sleep mode the rest of the time, a small battery can last up to 4 or 5 years. The flip side of the coin is a

lower bandwidth, as reported in the table below.

BLE does not only support one-to-one communication mode, but also broadcasting (one-to-many) and

mesh networks (many-to-many). The introduction of many-to-many communication mode implies the

possibility to significantly extend the range, thus potentially breaking the theoretical limit of about

100 m.

Bluetooth classic and BLE are actually very different protocols, and cannot interoperate. This means

that Bluetooth classic and BLE devices cannot communicate with each other, although most modern

devices, such as recent smartphones, support dual-mode Bluetooth modalities and can communicate

with both kinds of devices.

At the time of writing, Bluetooth classic chips are still common in wireless telephone connections,

such as wireless headphones or selfie sticks, while BLE is the first choice for the IoT, wearable devices

or fitness monitoring equipment.

Table: comparison between Bluetooth Classic and BLE

https://www.bluetooth.com/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

At the end of 2016, Bluetooth 5 was released to specifically target IoT applications. Bluetooth 5

combines some of the best features of Bluetooth classic and BLE, in terms of speed, range and power

consumption, by achieving:

● 2x speed with respect to BLE;

● 4x range;

● Improved wireless coexistence.

These new features make Bluetooth 5 particular promising for IoT applications, such as low-quality

video streaming over short distances, long-distance remote-control applications or synchronized

monitoring of sensor data without the need for a connection.

In comparison with other technologies, Bluetooth 5 has similar range as Wi-Fi, the same smartphone

support and also enables a mesh topology. But its power consumption is orders of magnitude lower

than Wi-Fi.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The new features of Bluetooth 5 are also closer to those of Home Area Network radios, such as ZigBee,

Z-Wave and Thread, which will be presented in the next unit, with the advantage

of standard smartphone support.

Ellisys Bluetooth Video 9: Bluetooth 5 & IoT

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before.

'Home Area Network' Radios

For applications like home or office-scale networks and automation, the so-called low-power radio

networks represent a reasonable alternative.

These protocols, such as Z-Wave, ZigBee and Thread, are designed to cover areas comparable to those

covered by Wi-Fi or BLE, but are extremely efficient from the point of view of power consumption for

integration in battery-operated devices, and usable in mesh and high-density point-multipoint or

multipoint-multipoint networks.

On the other hand, while Ethernet, Wi-Fi or Cellular rely on existing networks that a user can join as a

client, and Bluetooth builds upon a phone or computer acting as network manager, with these low-

power radios, one needs to run its own network.

https://www.youtube.com/watch?v=DY-95jOsPaQ

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The main differences between Wi-Fi, BLE and low-power radio networks are shown in the following

table.

Table: comparison between Wi-Fi, BLE and low-power radio networks

Zigbee

Zigbee is an open standard for wireless device-to-device communication built on the IEEE 802.15.4

specification and operates in the 2.4GHz RF band. Therefore, it shares the same frequency as Wi-Fi

and Bluetooth.

Zigbee products are widely adopted by consumers, with dozens of chips available and flexible

protocols. The large availability of different protocols for different applications, such as smart energy

or commercial building automation, poses issues about their interoperability, but the Zigbee Alliance,

a non-profit alliance of over 400 companies from around the globe, works towards the definition of

unique Zigbee standards for communications.

Zigbee is a cost-effective and low-power solution for wireless personal area networks, and supports

small amounts of data transmission over wide ranges, thanks to a mesh topology.

The main features of a Zigbee network are as follows:

● Low power: suitable for battery-operated devices with several years of battery life. For example,

some Zigbee devices like gas meters can achieve as many as 20 years of battery life;

● Low data rate: radio data rate of 250 kbps, making Zigbee ideal for sampling or monitoring

applications;

● Small and large networks are relatively simple to install and manage. The Zigbee standard

supports various types of network topologies;

https://zigbeealliance.org/solution/zigbee/
https://zigbeealliance.org/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● Range sufficient to cover a normal home.

In a ZigBee system architecture, there are 3 device types:

● Zigbee Coordinator (ZC): There is only one Coordinator in the network. It is a router with some

additional functionality: to select the network topology, establish the network, and administer

configuration information. The ZC must be running at all times;

● Zigbee Routers (ZRs): ZRs provide routing services to network devices. A ZR may also serve as a

sensor node, but unlike end devices, a ZR must always be on;

● Zigbee End Devices (ZEDs): ZEDs are leaf nodes that communicate only through their parent

nodes. ZEDs are usually battery powered and can be placed in low-power or sleep mode for long

periods of time.

Zigbee supports three types of network topologies:

● Star Networks, formed by a group of ZEDs with a ZC as their parent serving as network hub;

● Full Mesh Networks, where all nodes are ZRs, including the ZC after it has established the

network;

● Hybrid Mesh Networks, which combines star and mesh strategies. Several star networks exist,

but their hubs can communicate as a mesh network. A hybrid network allows for longer distance

communication than a star topology and more capability for hierarchical design than a mesh

topology.

Figure: Zigbee network topologies, CC BY-SA by by INDEX consortium

Z-Wave

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The Z-Wave protocol is another low-power, IoT wireless technology specifically designed for control,

monitoring and status reading applications in home automation.

It is a proprietary solution broadly deployed, with over 100 million products sold worldwide. The Z-

Wave Alliance that includes 700 companies, defines protocol standards and ensures interoperability

between systems and devices from all members.

Z-Wave technology essentials are summarized in the following:

● Low Powered RF communications technology;

● Sub-1GHz RF band. As such, it suffers less from interference than its competitors like

ZigBee, which operates in the 2.4GHz range;

● Supports data rates up to 100kbps, with AES128 encryption, IPV6, and multi-channel operation;

● Supports full Mesh Networks Topology, where any node can connect to any other.

In a Z-wave network there are two kinds of nodes: controllers and slaves.

● Controllers: a ll Z-Wave networks require at least one controller. The first one is the primary

controller, and is responsible for including and excluding nodes and assigning individual Node IDs

to each new device that is added to the network.

● Slaves: t hese nodes are devices such as lightbulbs, switches, etc., which do not feature a pre-

programmed Home ID, as they take one assigned by the primary controller.

Thread

At the time of writing, Thread is an emerging IoT wireless technology among the ‘Home Area Network’

Radio solutions.

Thread is an open Internet Protocol resting on IPv6 and based on the broadly supported IEEE 802.15.4

radio standard, which is designed from the ground up for extremely low power consumption and low

latency.

Unlike ZigBee, Thread enables not only device-to-device communication, but also device-to-cloud

communication.

Ultimately, Thread can be considered as a networking equivalent to Wi-Fi, with the advantages of

mesh topology and low-power consumption, making it ideal for home automation applications.

https://z-wavealliance.org/
https://z-wavealliance.org/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Therefore, this new and emerging protocol will probably make a significant impact in the context of

short-range RF networks, in the near future.

Exercise

What is the approximate distance between devices connected through a so-called short-distance

wireless connection?

☐ From a few centimetres to 1 metre.

☐ 1 to 3 metres.

☐ 1 to 100 metres.

☐ From a few centimetres to more than 1 kilometre.

Li-Fi

Li-Fi, or Light-Fidelity, is an alternative to the previous wireless technologies based on RF waves. The

idea of Li-Fi was introduced for the first time by Harald Hass in the TED Global talk on Visible Light

Communication (VLC) in July 2011.

This technology is based on the Visual Light Communication (VLC) principles: it is similar to Wi-Fi, with

the main difference that Li-Fi uses the modulation of ultraviolet, infrared and visible light intensity,

instead of radio frequency waves, to exchange data, thus allowing for much broader bandwidth. Li-Fi

can theoretically transmit at speeds up to 100 Gbit/s, and is less susceptible to electromagnetic

interference. Therefore, it may be ideal in critical environments like hospitals or planes.

The main components of a Li-Fi device are:

1. A high brightness LED as transmitter;

2. A silicon photodiode as receiver.

The spreading of solid state lighting technologies based on LEDs drove the birth of Li-Fi, because LEDs

are electronic devices and their optical intensity can be modulated and switched on and off at very

high speeds.

In this way, it is possible to generate digital strings of 1s and 0s by switching LEDs on and off. Then,

data can be encoded in the light by varying the LED flickering rate at frequencies that are high enough

to make the LED output constant to the human eye.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

At the moment, the main applications of Li-Fi are envisaged for indoor environments, such as smart

buildings, smart offices, hospitals and so on, thanks to the growing use of LED lamps in such

environments.

However, Li-Fi is still in a development phase.

For more info on Li-Fi, listen to Harald Hass talk at TEDGlobal2011 in the following video.

Wireless data from every light bulb | Harald Haas

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before

References

Short-range Wireless Communication (Third Edition), Editor(s): Alan Bensky, Newnes, (2019) ISBN

9780128154052, https://doi.org/10.1016/B978-0-12-815405-2.09989-9.

https://www.youtube.com/watch?v=NaoSp4NpkGg

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Medium-distance wireless solutions

Low Power Wide Area Networks (LPWAN): Introduction

As introduced in the previous units, the Internet of Things (IoT) constitutes the communication

network of a variety of devices, home appliances, cars, and any other object that incorporates

electronic media, software, sensors, actuators and network connectivity, and allows data connection

and exchange. Simply put, the philosophy of the IoT is to connect all electronic devices to one another

(local area network) and / or to the Internet (world wide web) creating Wireless Sensor-Actuator

Networks (WSANs). Its operating network layer incorporates a fusion of public and private networks

such as Local Area Networks - LANs (Bluetooth, Zigbee, Wi-Fi), Cellular Networks (GSM, 3G, 4G, 5G)

and recently Low Power Wide Area Networks - LPWANs (LoRa, Sigfox, NB-IoT) and Satellite Networks

(VSAT). The choice of the mixture of various networks intends to achieve a communication level of a

certain quality and reliability by also taking into account the security needs concerning the transmitted

data (Wei & Lv, 2019; The Things Network, 2019).

LPWANs are more suitable for IoT applications where each device needs to transfer a very small

amount of data over a long range. The three most popular LPWAN technologies that have arisen at

global level are Sigfox, LoRa and NB-IoT, which involve many technical and functional differences. The

most important of these differences are the range (up to 40 km for Sigfox, 20 km for LoRa, 10 km for

NB-IoT), the power consumption, where LoRa technology is the winning one, and the business model

of operation, where LoRa is a public network, Sigfox is a private network, albeit both are using

unlicensed bands, and NB-IoT is operated by cell carrier companies on licensed bands. As far as the

topology is concerned, LoRa and Sigfox technologies need to connect to a gateway, which typically

uses high bandwidth networks such as Wi-Fi, Ethernet or Cellular in order to connect to corresponding

servers, thus implementing a star-of-stars topology, where gateways relay messages between end-

devices and a central network server (The Things Network, 2019; LoRa Alliance, 2019).

The transmitted data from sensors belonging to a Wireless Sensors Network (WSN) follows specific

standards that come together in so-called middleware integrating sensor nodes, actuator nodes and

a base station. The latter takes on the role to collect, pre-process and transmit all data. Various

middleware protocols have been developed focusing on different transmission needs, which can be

evaluated against their efficiency, reliability, modularity, security and energy consumption

(Nikolidakis, Kandris, Vergados & Douligeris, 2015). A very popular standard based middleware for

transporting messages between devices is MQTT (Message Queuing Telemetry Transport), which is a

Publish–Subscribe protocol invented in 1999 (Stanford-Clark & Hunkeler, 1999). It is a lightweight-

messaging protocol developed to support conditions of low-bandwidth, high-latency and networks of

low reliability. Consequently, and due to its mentioned lightweight properties, an extension version

of MQTT has been developed for WSNs, and is called MQTT for Sensor Networks (MQTT-SN) (Al-

Roubaiey, Sheltami, Mahmoud & Salah, 2019).

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@c1553d11852e4259a2f8df6e44d6a9d9

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Each WSN can follow one of the three different topologies: star topology, tree topology or mesh

topology (Wang et al., 2015). What LoRaWAN and Sigfox architectures use is a long range star

topology, which makes the most sense for preserving battery lifetime when long-range

connectivity may be needed (LoRa Alliance, 2015). In any case, prior to the selection of the most

appropriate technology, different solutions should be evaluated in terms of performance criteria like

received signal strength (RSS) and packet loss rate (PLR) (Jedermann et al., 2018).

LoRa vs Sigfox

Authors: Nikos Tsotsolas (Green Projects) and Ilias Kalfas (American Farm School)

LoRa and Sigfox are two of the main competitors in the LPWAN space. And while the business models

and technologies behind the companies are quite different, the end goals of both Sigfox and the LoRa

Alliance are very similar: t hat mobile network operators adopt their technology for IoT deployments

over both city and nationwide low power, wide-area networks (LPWANs).

Sigfox is a network operated by Sigfox S.A., a private company based in France, which sets up antennas

(gateways) on towers (like a mobile phone company). Sigfox is a narrowband (or ultra-narrowband)

technology that uses a standard radio transmission method called binary phase-shift keying (BPSK),

and it takes very narrow chunks of spectrum and changes the phase of the carrier radio wave to

encode the data. This allows the receiver to only listen in a tiny slice of spectrum, which mitigates the

effect of noise. It requires an inexpensive endpoint radio but a more sophisticated gateway (base-

station) to manage the network. Sigfox communication tends to be better if it is headed up from the

device to the gateway. It has bidirectional functionality, but its capacity going from the gateway back

to the device is constrained, and you will have less link budget going down than going up. This is

because the receiver sensitivity on the device is not as good as on the more expensive gateway (Ray,

2018).

LoRa stands for Long Range Radio. It is an open-standard governed by the LoRa Alliance, and it was

developed by a company called Sentech. The expansion of this network is due to the rapid increase in

the number of gateways both by telecommunication providers and in the context of the development

of private networks. LoRa is a physical layer technology that modulates the signals in sub-GHz

ISM (Industrial, Scientific and Medical) band using a proprietary spread spectrum technique. Like

Sigfox, LoRa uses unlicensed ISM bands, i.e., 868 MHz in Europe, 915 MHz in North America, and 433

MHz in Asia. Both are mainly for applications that have many end-points and require uplink only.

However, a bidirectional communication is provided by the chirp spread spectrum (CSS) modulation

that spreads a narrow-band signal over a wider channel bandwidth. The resulting signal has low noise

levels, enabling high interference resilience, and is difficult to detect or jam. Being a multiple access

protocol, it follows star-on-star topology to relay messages. Communication to the central server is

done using gateways by sending information on different frequency channels and data rates using

coded messages. This method is efficient as the messages are less likely to collide and interfere with

http://www.green-projects.gr/PublicPages/HomePage.aspx
https://www.afs.edu.gr/afs.php?pg=153

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

one another. It therefore increases the capacity of the gateway. LoRa provides mobility, a bi-

directional communication which is secure, and localization services to provide simple, seamless

interoperability among smart things (Pandey, 2018; Ray, 2018).

In the following table, the LoRa and Sigfox technologies are compared against basic technical and non-

technical characteristics.

Table: overview of LPWAN technologies: Sigfox, LoRa (Mekki, Bajic, Chaxel & Meyer, 2019)

LoRa Sigfox

Bands Free bands (868 MHz in

Europe)

Free bands (868 MHz in Europe)

Frequency 250 kHz 100 Hz

Data rate 50 kbps 100 bps

Duplex Yes / Half-duplex Limited / Half-duplex

Maximum number of

messages / day

Unlimited 140

Maximum payload 243 bytes 12 bytes

Range 20 km, 5 km (urban) 40 km, 5 km (urban)

Authentication and

encryption

Yes (AES 128 bits) Not supported

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Operators Public Sigfox

Allow private networks Yes No

Design a LPWAN Network

An important issue while developing LPWAN networks is the study of the overall coverage of the

network. For the deployment of an IoT network, and the corresponding behaviour of the

signal from the time that it is transmitted, until it reaches the receiver, no matter if it is initiated by

the sensor device or the gateway, the coverage will be analyzed based on the radio channel

characteristics. This analysis is crucial because the electromagnetic wave that is generated by the

transmitter suffers attenuation (reduction in power density) before reaching the receiver. This

phenomenon is called path loss, and is a major component in the analysis and design of the link budget

of the network, since it allows to predict the coverage area, and also to quantify how reliable the radio

link is for the area of interest.

The link budget in the IoT network includes several factors, such as emission power values, various

equipment losses (gateway, sensors, cables, connectors, etc.), antenna gains and propagation effects.

As for the latter, the signal in the propagation medium, which is air in most cases, is subject to

attenuation, such as fading (multipath or Doppler), shadowing (interference caused by obstacles),

interference and noise, further described in this lecture. All these factors should be considered and

be part of the input parameters in the software that will be used for the development of such a study.

Before the selection of the exact placement of each gateway, a simulation procedure is strongly

recommended, concerning the signal intensity for a range of 10 km (for urban areas) to 100 km (for

rural areas) around the alternative mounting points. For such a simulation, several software tools are

available in the market such as Cloud-RFTM, which is an open source online service for radio signal

propagation modelling taking into account the terrain of each area. In these software tools, the

following information is fed to run the simulation process concerning the deployment of a LoRa

network:

● LoraWAN signal characteristics;

● Number and exact position of the gateways;

● Technical characteristics of the gateways (e.g. antenna polarization, antenna gain, feeder line

loss);

● Number of edge devices per type;

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● Technical characteristics of the edge devices that affect the communication process (e.g. height

above ground level, receive gain, sensitivity);

● Packets sizes;

● Packet arrival rates;

● Traffic characteristics.

The detailed coverage analysis, which will be produced through the simulation process, will provide

maps that will show the signal strength for various spreading factors per gateway over the area where

the edge-devices are planned to be placed. Different parameters will be taken into consideration

within the propagation models / tools, such as line-of-sight and buildings and vegetation, for the

coverage analysis. This analysis will predict coverage results such as best serving cell, overlapping area,

and it will also propose detailed adjustments, such as gateway number, gateway configuration,

antenna technical characteristics and parameters (height and tilt) after analyzing the coverage

prediction results. The coverage analysis will provide simulation results for different edge-nodes

positions, such as signal strength, signal-to-noise ratio, uplink and downlink throughput, delay and

packet error rate. The coverage analysis shall also include result maps in 2D and 3D, propagation paths

in 2D and 3D, statistical evaluations of result maps, downlink and uplink quality indicator (BLER, PER,

etc.) analyses and coverage redundancy analysis. The following image shows an example in Google

EarthTM of a coverage map produced by Cloud-RFTM

Figure: Coverage Map of a LoRa Network produced in Cloud-RFTM, CC BY-SA by by INDEX consortium

References

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Al-Roubaiey, A., Sheltami, T., Mahmoud, A., & Salah, K. (2019). Reliable Middleware for Wireless

Sensor-Actuator Networks. IEEE Access, 7, 14099-14111. doi: 10.1109/access.2019.2893623

Jayaraman, P., Yavari, A., Georgakopoulos, D., Morshed, A., & Zaslavsky, A. (2016). Internet of Things

Platform for Smart Farming: Experiences and Lessons Learnt. Sensors, 16(11), 1884. doi:

10.3390/s16111884

LoRa Alliance. (2019). About LoRaWAN® | LoRa Alliance®. Retrieved 14 December 2019, from

https://lora-alliance.org/about-lorawan

Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for

large-scale IoT deployment. ICT Express, 5(1), 1-7. doi: 10.1016/j.icte.2017.12.005

Pandey, P., 2018. Comparative study of long range communications, Pilani, India: Birla Institute of

Technology and Science.

Exercise

As illustrated in the previous units, the choice of the most suitable data-link technology is not a trivial

issue.

Look at this example reported in the open-access paper: An Internet-of-Things (IoT) Network System

for Connected Safety and Health Monitoring Applications about the development of an IoT network

system for connected safety and health monitoring. The following figure provides a sketch of the

corresponding architecture.

https://doi.org/10.3390/s19010021
https://doi.org/10.3390/s19010021

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: figure 1 from Wu, F.; Wu, T.; Yuce, M.R. An Internet-of-Things (IoT) Network System for Connected Safety and
Health Monitoring Applications. Sensors 2019, 19, 21., CC BY-SA by Sensors 2019, 19, 21

This system is divided into 3 sections: 1) the wearable sensor node (Wearable Body Area Network -

WBAN) to collect sensor data, 2) an IoT gateway to connect the WBAN with the Internet , and 3) the

IoT cloud.

Question

In the end, which wireless technologies have been selected for this project?

☐ BLE for both WBAN and the IoT gateway.

☐ Wi-Fi for both WBAN and the IoT gateway.

☐ LoRa for both WBAN and the IoT gateway.

☐ A hybrid network consisting of BLE for WBAN and LoRa for the IoT gateway.

Long-distance wireless solutions

Cellular

Broadband cellular connectivity plays a fundamental role for the IoT, thanks to its global reach,

scalability, and high bandwidth capabilities, but at the expense of substantial power consumption.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s19010021
http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@1d6bf64d49394d8b93920639968ad3f2

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

This is acceptable for devices that are connected to a power grid or that can be recharged on a

frequent basis, but much less so for IoT applications that require remote sensors, actuators or devices

to last months or years on battery.

For this reason, cellular connectivity is usually reserved for so-called backhaul networks. For

instance, a gateway may use a LPWAN system to connect all sensors and actuators, and then use

cellular to transmit the collected data to the cloud. Other uses are in devices that need to exchange a

lot of data without issues related to battery life.

In this context, new cellular technologies like LTE-M (Long-Term Evolution-M), and Narrowband

Internet of Things (NB-IoT) have been developed specifically by 3GPP (3rd Generation Partnership

Project) for IoT applications, as upgrades to cellular networks like 2G, 3G or 4G with the specific goal

to reduce data costs per device and power requirements.

These technologies are LPWANs, based on the GSM/EDGE and UMTS/HSPA technologies. As an

example, NB-IoT is a LPWAN radio technology standard developed by 3GPP to enable a wide range of

cellular devices and services with downlink and uplink peak rates up to 127 and 159 kbit/s,

respectively.

Some of these cellular technologies are currently available, and others are still under development at

the time of writing, including 5G.

The fifth-generation wireless technology will make an impact not only in high-speed mobile

communication but also for IoT applications. In comparison with the existing 4G network, the 5G

protocol:

● will enjoy a higher bandwidth throughput;

● will be 100 times faster than the current network;

● will support a massive scale of IoT communications, in the range of 1 million IoT devices per

square kilometer;

● will yield a 90% reduction in power consumption.

Satellite

Satellite connectivity finds a place in IoT applications mainly when broad coverage is required or

remote contexts are concerned, since a single network of satellites is capable of providing full

coverage over the entire planet. In fact, cellular networks are widespread in populated areas, but their

coverage in remote locations is limited or unreliable.

https://en.wikipedia.org/wiki/Backhaul_(telecommunications)
https://www.3gpp.org/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Conversely, the range of satellite networks can overcome the limitations of cellular networks and

guarantee connection in places where infrastructures are underdeveloped or absent, such as the

middle of the ocean or on high mountains.

For IoT applications, two kinds of connectivity configurations may be implemented: direct and

backhaul.

Direct: dual mode or satellite only

The dual mode satellite connectivity uses cellular data when available, and switches to satellite only

when necessary. This guarantees the best coverage, while exploiting the lower cost and higher

bandwidth of cellular whenever possible. This system is employed in container ships, for instance,

which may use cellular when close to coastlines, but then resort to satellite on the open water.

The satellite-only option is typically used by standstill resources like oil and gas equipment, which may

need to send moderate amounts of data from remote locations.

Backhaul

The second major type of configuration is backhaul, and makes use of a main tower that connects

directly to a satellite network, and then a different kind of connectivity, such as an LPWAN platform,

to connect with the sensors, actuators and edge-devices in the area. This connectivity option is

typically used when one needs many low bandwidth devices in remote areas.

Satellite requires high power usage, and can require larger pieces of equipment, such as dishes, for

connectivity. This raises the cost for individual devices, and can make direct connections unfeasible

for groups of sensors or actuators that do not exchange much data.

One example of this kind is a farm that uses a set of moisture sensors to collect soil data. All sensors

may use an LPWAN network to connect to a main tower, which then transmits the data over a satellite

connection. This saves on battery life and may considerably reduce the overall costs of the sensors.

References

Wei, J.; Han, J.; Cao, S. Satellite IoT Edge Intelligent Computing: A Research on Architecture. Electronics

2019, 8, 1247. https://doi.org/10.3390/electronics8111247

M. De Sanctis, E. Cianca, G. Araniti, I. Bisio and R. Prasad, "Satellite Communications Supporting

Internet of Remote Things," in IEEE Internet of Things Journal, vol. 3, no. 1, pp. 113-123, Feb. 2016,

doi: 10.1109/JIOT.2015.2487046.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Exercise

Question

In which of the following IoT architectures do you think that a long-range solution, such as cellular or

satellite, could be the most suitable solution?

☐ Outdoor environmental monitoring in open nature to manage natural disasters, such as

earthquakes, fires or floods.

☐ Traffic monitoring in a big city.

☐ Real-time healthcare monitoring of patients in hospitals.

☐ Smart whiteboard for connected classrooms.

Poll

IOT CONNECTIONS

In your opinion, which IoT connection technologies will boost more in the next 2 years?

☐ Next Wi-Fi generation, i.e. 5g connection.

☐ Low power, short range connections like BLE, ZigBee or Z-wave.

☐ Low Power Wide Area Networks like LoRa, Sigfox or NB-IoT.

☐ New disruptive technologies, such as Li-Fi.

Application layer protocols

Introduction

An application-layer protocol is the language used by computers and devices to communicate above

a transport-layer infrastructure, and defines the procedures for transferring data at the highest level

of abstraction. A comprehensive discussion of this topic falls outside of the scope of this section, which

is to do a roundup of some common solutions, and to discuss their advantages and limitations for IoT

applications, with the intent to provide the trainee with general concepts and practical guidelines.

As we have already mentioned, in principle, the choice of a particular application-layer protocol is

independent of the underlying transport, network and data-link stack, as well as the overlying scope,

i.e. the final user application. However, in reality, practical considerations create a strong

interconnection among all these components:

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@chapter+block@7f3f50ed79c74d1aae005e956e35a97a

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● The overall amount of data that is exchanged in the communication process, in combination with

the size of the network packets and with the bandwidth that are supported in the underlying

layers;

● The need to interface to overlying services, such as external web resources, for instance.

For these reasons, the entire stack from link to application-layer protocols is often devised as a

coherent suite, such as the cases of networks based on Bluetooth, LoRaWAN or Zigbee. Here, we shall

focus on the most common solutions of application-layer protocols met in the so-called TCP/IP model

of the Internet.

HTTP: General features

The Hypertext Transfer Protocol (HTTP) is the most popular application-layer protocol running over

transport-layer protocols as TCP and UDP for communication through the World Wide Web and is

primarily designed to exchange so-called hypertexts through so-called hyperlinks. The default ports in

use with HTTP are 80 or alternatively 8080. The protocol is complex and has undergone various

revisions until the current and upcoming versions, HTTP/2 and HTTP/3. Here, we shall focus on a

narrow set of classical features, although there exist complementary techniques that enable different

behaviours and versatile personalization.

Client-server architecture: the main characters in HTTP are clients and servers. In this architecture,

one client, such as a web browser, issues a request message to one server that returns a response

message often containing HTML code, for instance. Response messages may be cached in

intermediate servers to optimize network traffic. From the get-go, we notice that such client-server

architecture may be problematic in many IoT contexts. Consider a generic case where a client may

need to receive critical updates from a server. Since the server cannot notify the client on its own

initiative, the classical solution is polling, i.e. the client querying the server at frequent intervals.

However, polling may be either too sporadic or consume too much bandwidth, especially in contexts

where updates are rare but latency is an issue. In a later unit, we will mention the scope of server-

push technologies that are intended to patch these situations. However, it is important to understand

that the client-server architecture may pose these kinds of nuisances.

Consider, for instance, a server collecting data from a client posting the temperature probed in a

compartment of a greenhouse. Another client may want to get this information, in order to make

urgent decisions, such as turning a heater on below a certain threshold. Although the first client may

post new data without delay, the second client needs to poll the server with a certain frequency in

order to be able to react as soon as possible. But the threshold may be crossed only once in a while,

and so this setup may result in a substantial waste of bandwidth.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: Client-server architecture, CC BY-SA by INDEX consortium

Session- and state-lessness: the original version of HTTP provided that every single couple of request

and response messages consisted of a new session. This structure was designed to streamline the

exchange of hypertexts hosted in different servers through hyperlinks cross-referenced in different

webpages, without the burden to keep too many sessions open. The flip side of the coin is poor

latency, because every single request message sets up a new connection over a protocol like TCP that

may entail complex handshake procedures, such as 3-way handshake rules. Later versions of HTTP

have introduced different ways to implement persistent connections for bandwidth optimization.

Another peculiar feature of HTTP is the concept of statelessness, i.e. that the server does not retain

any information on the client. In this context, cookies are a common tool to overcome possible

limitations of this feature. Cookies are textual strings transmitted by the server together with a

response message, which the client may incorporate in the header field of any subsequent request

message addressed to the same resource. For instance, cookies may contain a token meant to

authenticate a client and maybe identify its chart in a website for online shopping, to name but one

example.

Message format: messages are transmitted as textual strings.

A request message sent from a client to a server consists of the following components:

● A request line (e.g., GET /images/logo.png HTTP/1.1). In the next unit, we will expand on the

main kinds of actions and the identification of resources requested through this line. The

request line terminates with the chars carriage return <CR> and line feed <LF>;

● Request header fields (e.g., Host: en.wikipedia.org). These fields define various parameters of

the transaction formulated as an arbitrary number of colon-separated key-value pairs, and

also end with the chars <CR><LF>;

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● An empty line. I.e. the chars <CR><LF>;

● An optional message body. For instance, this part may contain a textual string to be put or

posted in a form.

Instead, a response message sent from a server to a client contains the following components:

● A status line (e.g., HTTP/1.1 200 OK, or 404 Not Found). This line includes a status code in

numerical format and a reason message as plain text. Also the status line terminates with the

chars <CR> <LF>;

● Response header fields (e.g., Content-Type: text/html). These fields are similar to those of

request messages and always end with the chars <CR> <LF>;

● An empty line. I.e. the chars <CR><LF>;

● An optional message body. For instance, this part may consist of HTML code for creating a

webpage.

In practice, messages in HTTP are based on textual instructions and often contain substantial overhead

and chunks of HTML code. In the next unit, we will introduce the concept of REST architecture with a

focus on the request line of request messages.

HTTP: RESTful architecture

The concept of the Representational State Transfer (REST) is an architectural style that is common in

many practical implementations of HTTP. Besides the concepts of client-server architecture,

statelessness and cacheability that we have already mentioned, REST enforces the additional

constraint of a uniform interface as a common set of rules intended to support the scalability of the

Internet. These rules are implemented from the request line of request messages.

URIs: Data are organized in resources made addressable though Unique Resource Identifiers (URIs).

Resources may be collections of elements or single elements represented in a standard format, such

as HTML, XML or JSON. URIs are typically structured in hierarchical layers separated by slashes like

https://www.cnr.it/en/department/513/engineering-ict-and-technologies-for-energy-and-

transportation .

Methods: clients interact with these resources though a standard set of methods that may be

expressed as verbs or other keywords. There exist many methods regimented in HTTP. The most

common and iconic cases are the verbs GET, PUT, POST and DELETE.

Table: most common methods.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Method

Effect on a collection like

http://api.example.com/reso

urces/

Effect on an element like

http://api.example.com/resources/myElement.

html

GET Returns a list of elements and

additional details

Returns a representation of the element in a

certain format

PUT Replaces the entire collection

with a new one

Replaces the element or creates a new one if it did

not exist before

POST Creates a new element in the

collection. Its URI is

automatically assigned and

returned in the response

message

Creates a new item within the element, if possible

DELETE Deletes the entire collection Deletes the element

Some methods are safe or nullipotent, such as GET, and do not alter the addressed resources. Others

are idempotent, such as PUT and DELETE, because their repetition does not cause multiple effects.

While REST is not a standard definition per se, RESTful implementations often make use of standard

protocols like HTTP and CoAP, and standard formats, such as HTML, XML and JSON, which will be the

subject of the next section. However, before we move onto these formats, we briefly introduce CoAP

as an interesting variation on HTTP.

HTTP and CoAP

CoAP

In previous units, we have seen that HTTP is an application-layer protocol originally designed to

exchange hypertexts through hyperlinks for a human interface, such as a DIYer surfing on the Internet.

Request and response messages are made of textual strings that often contain keys encoded in plain

English. Resources are typically represented through a markup language like HTML, which will be the

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@33b87689137f47cdaaa0fa03b1e7cbb6

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

subject of the next section. Overall, HTTP does not prioritize the optimization of bandwidth and was

not optimized for M2M communication.

The Constrained Application Protocol (CoAP) is a lightweight variation on HTTP specialized for

constrained devices called nodes, and for IoT applications. CoAP may serve communications between

nodes on the same constrained network, as well as between nodes and general devices on the

Internet and between nodes on different constrained networks joined by the Internet, and works over

UDP. A convenient feature of CoAP is its interoperability with HTTP for integration with web services,

while providing additional features such as multicast support for point-to-multipoint communication,

minimal overhead and simplicity.

Like HTTP, CoAP makes use of request and response messages, but unlike HTTP, its header fields are

in simple and binary format. All messages include the following components:

● A 4-byte header encoding the version number; the type of message, i.e. whether it is a request or

a response and additional details; the length of a so-called token (see below); a request or

response code containing a status code, a method or additional details; and a message ID to detect

duplications and pair requests and responses. This is the only necessary component, and so

messages can be as short as 4 bytes;

● An optional token serving as a local identifier of the client for use in case of concurrent

transactions;

● Possible options;

● An optional payload.

CoAP adheres to REST principles, and implements the same concepts of URIs and methods as HTTP to

address and interact with resources. Other improvements over HTTP are that CoAP provides

an OBSERVE function that a client may add as a flag in a GET message to receive updates from a server,

and so practically implement a push behaviour , and a built-in DISCOVERY function that a client may

exploit to locate resources offered by a server. The format of resources found in HTTP will be the

subject of the next section.

Exercise

The paper Analysis of CoAP Implementations for Industrial Internet of Things: A Survey describes

various implementations of CoAP for applications at industrial level. Which of the following

statements is true?

https://doi.org/10.1016/j.procs.2017.05.323
https://doi.org/10.1016/j.procs.2017.05.323

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

☐ The Group Communication for the CoAP extension allows CoAP to behave like HTTP in terms of

multicasting and beaconing.

☐ CoAP is a lightweight alternative to C, Java, JavaScript and Python, which is designed for industrial

use.

☐ CoAP cannot use the Transport Layer Security (TLS) protocol, because it runs over UDP, rather than

TCP. Relevant alternatives include the Datagram Transport Layer Security (DTLS) protocol.

☐ The Block-Wise Transfers in the CoAP extension allows CoAP to run over TCP, and therefore to

exchange larger payloads.

Common formats found with HTTP

HTML

The Hypertext Markup Language (HTML) is the most standard format for resources found in HTTP.

What a server returns as a response message is likely to contain HTML code as a message body. Then,

it is the task of a browser to render this code into a multimedia page. To get an idea, the option View

Source is there to display the original payload in most common browsers.

HTML code provides a means to structure hypertexts by denoting items like headings, paragraphs,

lists, links, quotes, etc., and by enabling the incorporation of images and other objects, such as

interactive forms, etc. HTML elements are designated by tags delimited by angle brackets. Tags such

as or <input ... /> introduce content into the hypertext. Other pairs of start and end tags,

such as <p> and <\p>, surround and provide instructions to format plain text, and may include

attributes and more tags as sub-elements.

For instance, the following figure shows an example of a simple page rendered with HTML code.

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@63d3f4a27dbe4a1d91ca5d1ca502c720

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: CC BY-SA by INDEX consortium

The source code responsible for the above figure may be the following:

<!DOCTYPE html>

<html>

 <body>

 <div>

 <h1>Par title</h1>

 <p>Par text</p>

 </div>

 <div>

 <h1>Table title</h1>

 <table style="border: 1px solid black;">

 <thead>

 <tr style="border: 1px solid black;">

 <th style="border: 1px solid black;">

 <p><h2>Col 1</h2></p>

 </th>

 <th style="border: 1px solid black;">

 <p><h2>Col 2</h2></p>

 </th>

 </tr>

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 </thead>

 <tbody>

 <tr style="border: 1px solid black;">

 <td style="border: 1px solid black;">

 <p>Val 1</p>

 </td>

 <td style="border: 1px solid black;">

 <p>Val 2</p>

 </td>

 </tr>

 </tbody>

 </table>

 </div>

 </body>

</html>

At first sight, the source code may be rather intimidating. The text

between <html> and </html> describes the overall page, and the text between <body> and </body> is

the visible content. The tag <div> defines a division of the page, while the

tags <h1> and <p> respectively indicate titles and paragraphs. The construction of a table may benefit

from the definition of sections, and requires the indication of rows and columns with tags

as <tr>, <td>, etc. Typical pages found in the Internet often arise from thousands of lines of HTML

code.

As the word suggests, HTML is a markup language that is mostly designed for a human interface.

Exchanging and parsing thousands of lines of HTML code in the context of M2M communication may

be a very inefficient approach. For this reason, other formats may be more suitable for the IoT.

XML and JSON APIs

The concept of web Application Programming Interface (API) is there to simplify the consumption of

resources in the IoT. In their broader meaning, APIs are computing interfaces that define the

interactions between multiple software applications. In the particular context of web APIs based on

HTTP, a practical approach is to encode resources in XML or JSON format as machine-friendly

alternatives to HTML.

The Extensible Markup Language (XML) is a markup language similar to HTML, and defines rules for

encoding documents in a format that is both human as well as machine-readable. With respect to

HTML, XML puts more emphasis on the concepts of simplicity, generality and usability across the

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Internet. Although its design focuses on textual data and Unicode characters, XML is widely used to

represent arbitrary structures of data.

The JavaScript Object Notation (JSON) is an open format that uses human-readable text to store and

transmit data as simple attribute-value pairs or arrays. JSON was derived from JavaScript, but any

programming language may be suitable to generate and parse files in JSON format. With respect to

HTML and XML, JSON is not a markup language.

Many servers provide web APIs featuring resources in XML or JSON format, which may be used in the

IoT. One example is OpenWeatherMap, which provides the weather forecast or current situation in a

specified location. Suppose for instance that a certain application requires the current temperature in

Florence, Italy.

The HTML API available at an URI like

http://api.openweathermap.org/data/2.5/weather?q=Firenze&mode=html&appid=... , where key

app id is a personal identifier that has been blanked for security reasons, returns the web page

shown in the following f igure.

Figure: CC BY-SA by INDEX consortium

The corresponding source is the following code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta name="keywords" content="weather, world,

openweathermap, weather, layer" />

https://openweathermap.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 <meta name="description" content="A layer with current

weather conditions in cities for world wide" />

 <meta name="domain" content="openweathermap.org" />

 <meta http-equiv="pragma" content="no-cache" />

 <meta http-equiv="Expires" content="-1" />

</head>

<body>

 <div style="font-size: medium; font-weight: bold; margin-

bottom: 0px;">Florence</div>

 <div style="float: left; width: 130px;">

 <div style="display: block; clear: left;">

 <div style="float: left;" title="Titel">

 <img height="45" width="45" style="border: medium

none; width: 45px; height: 45px; background:

url("http://openweathermap.org/img/w/10d.png")

repeat scroll 0% 0% transparent;" alt="title"

src="http://openweathermap.org/images/transparent.png"/>

 </div>

 <div style="float: left;">

 <div style="display: block; clear: left; font-size:

medium; font-weight: bold; padding: 0pt 3pt;" title="Current

Temperature">15.86°C</div>

 <div style="display: block; width: 85px; overflow:

visible;"></div>

 </div>

 </div>

 <div style="display: block; clear: left; font-size:

small;">Clouds: 75%</div>

 <div style="display: block; clear: left; color: gray;

font-size: x-small;" >Humidity: 55%</div>

 <div style="display: block; clear: left; color: gray;

font-size: x-small;" >Wind: 2.6 m/s</div>

 <div style="display: block; clear: left; color: gray;

font-size: x-small;" >Pressure: 1003hpa</div>

 </div>

 <div style="display: block; clear: left; color: gray; font-

size: x-small;">

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 <a

href="http://openweathermap.org/city/3176959?utm_source=openwe

athermap&utm_medium=widget&utm_campaign=html_old"

target="_blank">More..

 </div>

 <script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=

r;i[r]=i[r]||function(){

(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new

Date();a=s.createElement(o),

m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.

insertBefore(a,m)

})(window,document,'script','//www.google-

analytics.com/analytics.js','ga');ga('create', 'UA-31601618-

9', 'auto');ga('send', 'pageview');</script>

</body>

</html>

Note that the identification of the info Current Temperature = 15.86°C may require a substantial

consumption of memory space and computational resources. This API is clearly designed for a human

interface. In spite of its minimal appearance, the text amounts to 2201 chars, let alone the image

stored under http://openweathermap.org/img/w/10d.png .

The same resource represented as XML API at an URI like

http://api.openweathermap.org/data/2.5/weather?q=Firenze&mode=xml&appid=... returns the

following code:

<current>

 <city id="3176959" name="Florence">

 <coord lon="11.25" lat="43.77"/>

 <country>IT</country>

 <timezone>7200</timezone>

 <sun rise="2020-09-27T05:08:08" set="2020-09-

27T17:03:34"/>

 </city>

 <temperature value="288.8" min="288.15" max="289.26"

unit="kelvin"/>

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 <feels_like value="286.2" unit="kelvin"/>

 <humidity value="55" unit="%"/>

 <pressure value="1003" unit="hPa"/>

 <wind>

 <speed value="2.6" unit="m/s" name="Light breeze"/>

 <gusts/>

 <direction value="30" code="NNE" name="North-northeast"/>

 </wind>

 <clouds value="75" name="broken clouds"/>

 <visibility value="10000"/>

 <precipitation value="0.32" mode="rain" unit="1h"/>

 <weather number="500" value="light rain" icon="10d"/>

 <lastupdate value="2020-09-27T14:47:19"/>

</current>

The structure is now much less verbose with 769 chars. The temperature is given in Kelvin, but its

identification requires processing much less data.

Finally, the JSON API at an URI like

http://api.openweathermap.org/data/2.5/weather?q=Firenze&appid=... provides the following file:

{"coord":{"lon":11.25,"lat":43.77},"weather":[{"id":500,"main"

:"Rain","description":"light

rain","icon":"10d"}],"base":"stations","main":{"temp":288.79,"

feels_like":286.54,"temp_min":288.15,"temp_max":289.26,"pressu

re":1002,"humidity":55},"visibility":10000,"wind":{"speed":2.1

,"deg":50},"rain":{"1h":0.32},"clouds":{"all":40},"dt":1601217

909,"sys":{"type":1,"id":6804,"country":"IT","sunrise":1601183

288,"sunset":1601226214},"timezone":7200,"id":3176959,"name":"

Florence","cod":200}

The information is even more concise with 483 chars only, and free of any markup instruction,

although a human reader may still easily parse the content, which continues to be based on

plain English, and write code to program a software application to do the same.

Overall, HTTP-REST is a ubiquitous protocol that was designed for a human interface surfing from

hypertext to hypertext, which is being adapted to the arena of M2M communication as well as by the

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

integration of variants or tools like CoAP or XML and JSON APIs. In the next section, we will introduce

an alternative protocol that was purposely designed for the IoT.

MQTT

General features

The Message Queuing Telemetry Transport (MQTT) technology is a lightweight publish-subscribe

protocol for communication between devices, and typically runs over TCP over IP networks, or any

other transport-layer protocol supporting bi-directional connections, such as Bluetooth. MQTT was

specifically designed to exchange data in remote environments suffering from small bandwidth and

unreliable connectivity, and its name is probably more of a historical value than a descriptive meaning.

MQTT sends credentials as plain text and does not provide for security or authentication. However, it

can be implemented over the Transport Layer Security (TLS) presentation-layer protocol for

encryption and protection. The default port for unencrypted connections is 1883. The encrypted

counterpart is 8883.

Client-broker architecture: the main characters in MQTT are clients and brokers. Therefore, the

foremost difference with HTTP is that servers give way to brokers. The role of brokers is to receive and

instantly route messages among the appropriate clients by pull and push operations. Data are stored

in a hierarchy of so-called topics that will be the subject of the next unit. Clients may publish and

subscribe to these topics. In practice, when a client publishes new data to a topic, the broker takes

charge to distribute that information to all clients that have subscribed to that topic. The client

publishing new data does typically not know the number nor the address of the clients receiving that

information. Likewise, the clients subscribing to a certain topic may be unaware of the client

originating the subscribed data.

Consider, for instance, the case of a broker collecting data from a client publishing the temperature

probed in a compartment of a greenhouse, which we have mentioned in an earlier unit on HTTP-REST

with due changes. Another client may want to subscribe to this information, in order to make urgent

decisions, such as turning a heater on below a certain threshold. The first client may post new data

without delay, and now also the second client is confident they will receive the alert of interest

both without lag and only when really needed.

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@b7606791ed734ba29cc8b79fbf38b167

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: Client-broker architecture, CC BY-SA by INDEX consortium

Session- and state-fullness: MQTT works on so-called sockets, which are persistent sessions between

a client and a broker. When a client connects to a broker, it can use a flag to set whether its session is

durable or not, i.e., upon disconnection and reconnection, whether to resume or abandon its current

subscriptions and any process left halfway. This feature may be useful to minimize the setup of clients

over unreliable networks: the client is already identified to the broker by the CONNECT request, and

does not need to resend SUBSCRIBE requests on every reconnection. When a subscription is set or

resumed, the client is notified with the last message published to that topic. When a message has

been distributed to all connected subscribers, the broker proceeds with its elimination, unless it was

designated as a retained message. In that case, the retained message is made available to new or

temporarily disconnected subscribers, and is modified only upon updating. When a client connects to

a broker it can also define last-will messages for publication to certain topics in the case of

disconnection. This feature may be vital in industrial environments where last-will messages may be

about the configuration of a critical facility left without external control.

Message format: MQTT focuses on simplicity and lightweight. Information is encoded in binary format

as much as possible. For instance, the CONNECT request features a 12-byte overhead containing

protocol name and version number, various flags on durability, last-will settings, etc., and a keep-alive

interval to ping the socket and check the connection; and a payload featuring client ID, username and

password and the body of last-will messages. The overall request typically takes about 80 bytes. The

shortest message to ping the socket is as small as two bytes. The largest message can reach 256

Mbytes. There exist fourteen message types used to connect and disconnect a client from a broker,

to publish data, to acknowledge receipt of data, and to supervise the connection between client and

broker.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The format of the data published in a topic is free, and it is the duty of the client subscribing to that

topic to parse that data. For these reasons, an active cooperation among the clients and a strict

organization of the topics are key prerequisites for a successful implementation of MQTT.

Topics

In a previous unit, we saw that HTTP-REST makes use of URIs to locate resources. In MQTT, data are

organized in topics. Likewise, in HTTP-REST a client interacts with resources through verbs such as

POST and GET. The counterpart in MQTT are publish, or PUB, and subscribe, or SUB, requests, with

the key differences that we have already explained.

For a number of reasons that include the lack of control over the type of data and the possibility to

use the wildcards described below, in MQTT, a hierarchical layout of topics is particularly beneficial.

Consider for instance a greenhouse connected to a broker and made of ten compartments where each

compartment contains read-only sensors and read/write actuators, such as thermometers,

hygrometers, heaters and sprinkles. Of course, the agronomist may want to organize all components

in different ways as shown in the following Figure, such as sensOrAct/param/compNumb, where

sensOrAct may be sensors or actuators, param may be temperature, humidity, setTemperature or

setFlowRate, and compNumber may be compartment0 to compartment9, for instance, or also

compNumb/sensOrAct/param, or maybe remove an intermediate level like sensOrAct. In any case, it

is critical that a subscriber or publisher knows the hierarchical layout as well as the format of the data

expected in each topic. Suppose for instance that a publisher wants to modify the set temperature in

compartment number 4. Of course it is critical to know whether to address the PUB request to

actuators/setTemperature/compartment4 or compartment4/setTemperature, etc. In particular,

some brokers support a dynamic generation of topics. So, for instance, if a new compartment is added,

a client may start to publish data in a new topic called actuators/setTemperature/compartment10

without prior notice. This option may be very convenient, but also very dangerous in the lack of mutual

understanding and cooperation among all clients. Imagine for instance a publisher that writes data to

a topic like actuators/setTemperature/compartment10 when other clients await subscriptions to

publish data in a topic compartment10/setTemperature.

A careful design of the hierarchical layout of topics is important also for the use of so-called wildcards.

In MQTT, there exist two kinds of wildcards denoted by the symbols + and #. The symbol + denotes all

items in a certain hierarchical level, while the symbol # means all items from there on. Suppose for

instance that a client wishes to monitor all values of all sensors in compartment number 4. Then it

may subscribe to sensors/+/compartment4. If it wanted to review the configuration of the actuators

over the entire greenhouse, it may subscribe to actuators/#. In complex architectures, the ease to use

wildcards may depend on the hierarchical structure set in the beginning, and its subsequent revision

may be a substantial burden.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

For a complementary overview over MQTT topics, watch the following tutorial video by MQTT

provider HiveMQ.

MQTT Essentials - Part 6 | MQTT Topics & Best Practices

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

MQTT: QoS

MQTT provides a basic selection for the Quality of Service (QoS) managed by the broker on request

from the client. The higher the level of the desired QoS is, the more dependable the transaction is,

but the amount of data exchanged between the client and the broker is larger.

● QoS0 means that the message reaches its destination at most once, because the data is

transmitted one time without any acknowledgment, or fire&forget. QoS0 may be enough in cases

where the loss of some data may be tolerable, or the underlying network is very reliable. Consider

for instance a client that subscribes to the temperature probed in a compartment of a greenhouse

that receives updates from another client once a minute. The loss of some updates may be

irrelevant.

https://www.youtube.com/watch?v=juq_l70Vg1w

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● QoS1 ensures that the message reaches its destination at least once, by the use of

acknowledgments. QoS1 may be ideal in cases where QoS0 may be too risky. Consider for instance

a client that needs to write to the set temperature of a heater in a compartment of a greenhouse.

● Finally, QoS2 provides that the message is received by its addressee exactly once, through the

implementation of a four-step handshake. This quality may be needed in particular contexts, such

as, for instance, toggling an actuator on or off like an alarm or a sprinkler in a compartment of a

greenhouse. Guaranteeing the goal of QoS2 without a very reliable socket is generally very hard.

In some cases, setting up a feedback system though additional sensors and topics might remain

the best solution.

In spite of its light weight, the possibility to ask a certain QoS makes MQTT an application-layer

protocol of the highest level for the IoT. In the next unit, we recapitulate a critical comparison between

HTTP-REST and MQTT.

For a complementary overview over MQTT QoS, watch the following tutorial video by MQTT provider

HiveMQ.

MQTT Essentials - Part 7 | Quality of Service Levels

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

https://www.youtube.com/watch?v=juq_l70Vg1w

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Exercise

Suppose that NASA has sent a robot to Mars which is equipped with sensors streaming geolocation

and other scientific data, and with motors to walk forward and turn left or right. The robot is somehow

supervised from Earth through MQTT, and controlled by the use of a pad featuring three buttons, i.e.

walk a step ahead and turn half a right angle left or right.

Which of the following considerations would make more sense?

☐ QoS0 may be ideal to optimize the use of bandwidth in such a remote situation, especially if the

geolocation data are accurate.

☐ QoS2 is crucial, because the quality of the connection is likely to be poor in such a remote situation.

☐ QoS1 is the best choice in order to allow the robot to move faster, as it is the only option compatible

with more than one trigger signal at a time.

☐ The quality of service is irrelevant in such a remote situation, where any interference with other

radios is extremely implausible.

Comparison of HTTP-REST and MQTT

The table below summarizes the main differences between HTTP-REST and MQTT.

Table: list of the main differences between HTTP-REST and MQTT.

HTTP MQTT

Architecture Pull-only client/server Publish/subscribe client/broker

Stateness

Stateless: servers keep no info on

clients. Clients may use cookies for

their recognition

Brokers are aware of subscriptions

and connection state of clients

Syntax and data

Text-based. Hypertexts are

typically embedded as HTML files,

or XML and JSON format

Mostly binary format. Payloads may

be published in any format though

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Location of data

A hierarchy of URIs often

presented as hyperlinks and

pointing to specific resources

A hierarchy of topics containing data

in any format

Overall, the HTTP-REST technology is particularly suitable for clients as browsers managing a human

interface, whereas the MQTT system is more specifically oriented towards M2M communication.

What is the best solution for the IoT is not a simple question, because the answer depends on the

specific application of interest, whether it requires extensive use of external web services or not, what

is the underlying transport, how reliable and expensive it is, what is the size of the intended data, etc.

In addition, please be aware that the table above only provides a rough schematization, and that there

exists a broad variety of technologies intended to implement different behaviours .

For instance, let us focus in particular on the concepts of server and broker. We have described servers

as a main character of HTTP serving clients through a pull-only approach, and brokers as the most

distinctive feature of MQTT routing messages among publishers and subscribers. The fact that HTTP

is pull-only represents a substantial limitation for the IoT.

However, there exist different ways to implement or simulate a push/pull behaviour in the framework

of HTTP, where an HTTP server is, or seems to be, able to unsolicitedly update messages to an HTTP

client.

Pushlets: in this technique, the HTTP server takes advantage of persistent sessions by leaving the

response to an initial request perpetually open, thus fooling the browser to remain on standby after

the initial download. The HTTP server then periodically sends snippets of typical JavaScript code to

update the requested webpage. The main drawback of this method is the lack of control over the

HTTP client timing out.

Long polling: Long polling is not a true push technology. It is a variation of traditional polling that

emulates a push mechanism, where the HTTP client issues request messages without expecting the

HTTP server to immediately respond. If the HTTP server is not ready to update any content, instead of

sending an empty response, it holds the request message on standby. Once new information is

available, the HTTP server immediately responds to the HTTP client, thus completing the open session.

Upon receipt of this response, in turn, the HTTP client immediately issues another request. In this way,

the usual latency associated with normal polling is removed.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

In addition, there are possibilities to bridge HTTP and MQTT, so that a client may use HTTP, and

another one MQTT within the scope of the same application. In a later unit within the section Hands

on with Microcontroller Units, we will demonstrate a practical application of this concept.

Another important remark is that there exist many other protocols available for the IoT over the

Internet, and many more for communication over other networks such as Bluetooth, LoRaWAN,

ZigBee, etc. Here, we have decided to focus on HTTP, CoAP and MQTT as instructive cases that, at the

time of writing, probably cover the majority of current applications of the IoT over the Internet.

Services

Introduction

An IoT service, often also referred to as a platform, is a multi-layer technology used to manage,

automate and control the connected devices. In other words, an IoT service helps to bring the physical

objects online, providing several functionalities useful to develop an IoT network. It typically refers to

the facilities provided by third-party servers or brokers. The nature and scope of such services may be

very heterogeneous and broad. There exist free services, paid services, large-scale infrastructures,

enterprise-level services, or prototype-friendly services designed for hobbyists, for instance. Some

services perform only one specific function, while others allow multiple solutions or even the design

of custom sub-services. At the time of writing, the development of web services for IoT applications is

a very dynamic direction of technological innovation. For this reason we will just present a few general

concepts and mention an arbitrary selection of examples without claims to be exhaustive.

Here too, IoT services add another level above the Application Layer mentioned in the Internet

protocol suite, which is, however, hardly independent of all underlying options. For instance, a web

service that requires HTTP, and does not support more lightweight push/pull-based alternatives like

MQTT, may imply a larger consumption of bandwidth and power. Likewise, if the Data-Link Layer

entails the use of a low-power wide area network as LoRa or Sigfox, the web service may need the

ability to hook into the relevant network through a gateway.

The best starting point to undertake the selection of an IoT service is to list the features needed in a

particular application. As we shall see in the next unit, in most cases, these requirements are likely to

fall into a handful of general categories, such as storing, retrieving and processing data from sensors,

coordinating communication among sensors and actuators, exchanging information with third-party

websites like a weather forecast API, receiving configuration changes or even firmware updates, and

providing a human interface.

Functions

Basic functions

We can classify the basic functions offered by web services in three main categories:

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@chapter+block@251ae5c757b140eb95a8bbea1afa1ad5
http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@849fb82723fd4b5da5d181f48fb46de2

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● Managing the data produced by the things and providing a human interface;

● Implementing communication among devices and managing configuration changes;

● Interacting with the Internet.

The first and obvious feature of an IoT service is the ability to retrieve data from the IoT nodes. It is

the very core of the IoT: smart things sending data to some remote listener. This listener may well be

another object, but, in any case, if we are using a web service, it must be able to listen for data coming

from peripheral nodes. This means that a common feature of every IoT service will be the ability to

receive data from the things. It follows that the capability to store data, typically in a time-stamped

database, is often another key feature of an IoT platform. The IoT nodes can produce large amounts

of data but, often, they cannot store them, especially in constrained contexts. The IoT paradigm

provides for a network delivery of data produced at edge level. And, if the data will be received

somewhere over the Internet, they will be stored there as well. Not only: remote storage of data is

also the first and necessary step in order to join or merge the raw information produced by the IoT

nodes and to process it, in order to work out more complex information.

The ability to process data is therefore another key feature of an IoT service and, as we will see in a

later unit, some platforms are specifically born around this purpose. The power of a remote server to

handle data of large size, heterogeneity and complexity is the link between the IoT concept and other

iconic features of the Fourth Industrial Revolution, such as the fields of big data analytics and artificial

intelligence, which will be mentioned in the next units.

Usually, IoT services also provide a way to access data, either in the form of a user interface, and / or

as an API that other things or apps can use. In particular, most of the IoT services provide a way for

the things to deal with human users, i.e. they offer a user interface (even if “owner interface” would

be a more appropriate phrase), such as a dashboard. In some cases, the use of native notifications

may be a useful option to inform the user of some event, even when the relevant app is in the

background or not running.

This last option, in particular, introduces another distinctive job for IoT services, i.e. to allow and

coordinate communication among peripheral nodes and, more in general, other devices on the IoT

network. Communication among devices is fundamental in complex networks, and allows things to

take local actions after some remote decision. IoT networks indeed are not always “read-only”, as one

may be led to think when picturing the things as “sensors” producing data. Often the things work

as “actuators” rather than sensors, thus giving the IoT infrastructure the ability to modify the physical

world.

Let us think about a predictive maintenance network, for example: the sensors in the network

measure something related to the health of a plant or a process, and send data to a remote service

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

that will elaborate them to extract some parameters useful to understand how close an eventual fault

condition may be. This information can now be used by a human decision-maker. But it can also be

directly consumed to trigger some automated maintenance or setting in the process, or even to safely

stop it in order to prevent a harmful break. In this quite simple and popular context, the

communication among devices is fundamental for a successful implementation of the IoT network.

Another very common and important role met in communication is to ensure that the devices in the

IoT network are up-to-date. The ability to manage configuration settings, credentials, and even

firmware updates at the device level is a great challenge to be handled by human users.

Unsurprisingly, many web services provide an administration panel as well as a REST API for

configuring and maintaining things.

Finally, another fundamental feature of an IoT service is to interact with the Internet. Internet is the

main world of the IoT, and being able to interact through the Internet is necessary not only to share

data and information among things, but also to use data and information coming from the outside of

the IoT network. In this way, the IoT platform can integrate virtually any information available on the

Internet with that produced by its sensors. The information is generally integrated by using an API,

and it is even possible to exploit this functionality to connect multiple IoT services together. Many of

the available IoT services support this functionality by enabling the creation of “event listeners”,

where specific conditions trigger a so-called “webhook” in the form of a REST call to a third-party

server.

Big data analytics

In this and the next unit we focus on two concepts of web services providing extensive functionality

for processing data with unprecedented added value, which have become key cornerstones of the

Fourth Industrial Revolution, i.e. big data analytics and artificial intelligence.

Big data analytics refers to processing massive and heterogeneous amounts of data. Over the years

the availability of data has steadily been rising. And the advent of the IoT revolution has consolidated

this trend with the release of ever more cheap and numerous information-sensing machines, such as

mobile devices, aerial or remote sensors, software logs, cameras, microphones, radio-frequency

identification (RFID) readers and wireless sensor networks. According to this paper from Science, the

per-capita capacity to store information has roughly doubled every 40 months since the 1980s.

Already in 2012, 2.5 exabytes (2.5×1018 bytes) of data were generated every day. According to IDC

White Paper – #US44413318, the global data-sphere will reach 175 zettabytes (175×1021 bytes) by

2025.

Big data analytics is the process of collecting and analyzing large volumes of data, in order to extract

hidden information. For instance, in association with sophisticated tools for business analysis, the

exploitation of big data in business intelligence may disclose new insights into market conditions and

https://doi.org/10.1126/science.1200970
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

customer behaviours, thus making the decision-making process more effective and faster, and

overcoming the limitations of traditional. Big data analytics includes technologies designed to discover

hidden patterns and connections between data of various origin and nature.

Typical challenges in big data analytics include capturing data, data storage, analysis, search, sharing,

transfer, visualization, querying, updating, information privacy and data source. Big data analytics was

originally associated with three key concepts: volume, variety, and velocity. The current usage of the

term tends to refer more to the use of predictive analytics and user behaviour analytics, i.e. a

predictive capability to use historical and statistical data in order to model what will befall in the future

or to prescribe the best conditions for a certain event to happen, and may apply to different scales

ranging from a particular business to societal challenges like the prediction of economic crises,

epidemics, the dissemination of opinions, the distribution of economic resources, or needs for

mobility.

A peculiar feature of big data analytics is the integration of heterogeneous or unstructured data, which

requires an innovative approach with respect to traditional database management systems, and calls

for software architectures designed to manage large volumes of information and capable of parallel

processing on cluster systems.

The main current objectives of big data analytics are:

● Lower costs: to reduce the cost of managing and analyzing large volumes of data.

● Higher speeds: to produce results in a short time, towards real time analyzes.

● Higher accuracy: to integrate large amounts of data for more accurate models.

The combination of these objectives collectively targets the possibility to anticipate the future with

the knowledge of the data collected in the past, and to identify business and societal trends, such as

new earning opportunities or macroeconomic issues.

Artificial intelligence

The field of artificial intelligence is very broad and interdisciplinary. The origin of its modern

formulation dates back to the 1950s, and its development has gone through ups and downs ever since.

At present, it is one of the most hopeful and ground-breaking pillars of the Fourth Industrial

Revolution.

In a nutshell, the traditional problems of artificial intelligence include functions that belong to its

natural counterpart like reasoning, knowledge representation, planning, learning, natural language

processing, perception and the ability to move and manipulate objects. General intelligence is its most

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

ambitious and ultimate objective, although its exact definition remains a matter of philosophical

debate. Current approaches include statistical methods, computational intelligence, and traditional

symbolic problems drawn from the fields of computer science, information engineering, mathematics,

psychology, linguistics, philosophy, and many others. Among the most important tools, we mention

algorithms for search engine optimization, mathematical optimization, artificial neural networks, and

methods based on logic, statistics, probability and economics.

Artificial intelligence pursues the ability of an automatic system to correctly interpret external data,

to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible

adaptation. Many algorithms are capable of learning from data, and to enhance themselves by

learning heuristics derived from trials that worked well in past iterations, or even to write other

algorithms. The earliest approach to artificial intelligence was formal logic based on rules like "If an

animal walks on four legs, then it may be a cat". A second, more general, approach is Bayesian

inference, where instructions take a form like "If the animal under study walks on four legs, then adjust

the probability that it is a cat in such-and-such way". The third major approach makes use of

analogizers, such as nearest-neighbour tools like "After examining the records of past animals with

number of legs, size, colour, and other factors closely matching the individual under study, such a

percent of those turned out to be cats". A fourth approach is artificial neural networks that take

inspiration from the architecture of natural brains. These networks make use of layers of

computational neurons capable to adjust their mutual connections, by identifying and iteratively

reinforcing those links that provide more likelihood to output the desired response. These four main

approaches can overlap with each other and with evolutionary systems or other methods. For

instance, neural networks can learn to make inferences, to generalize, and to make analogies.

Among the most distinctive features of artificial intelligence is the concept of machine learning.

Machine learning is the study of computational algorithms that automatically improve through

experience towards a certain objective, and may be unsupervised, supervised or reinforced.

Unsupervised learning is the ability to find patterns in a stream of inputs, such as images of cats and

dogs, without requiring a human programmer to label the data first. Supervised learning includes both

classification and numerical regression, which requires a human programmer to label the inputs in a

training session. Classification is used to determine the category of something, such as cats and dogs,

and takes place after the artificial agent has seen a number of examples from all categories of interest.

Regression is the attempt to produce a function that describes the relationship between certain inputs

and outputs, in order to predict the values of the outputs from those of the inputs. Both classifiers

and regression learners can be viewed as function approximators trying to identify an unknown

relationship. In reinforcement learning, the system is rewarded for good responses and punished for

bad ones, and uses this sequence of rewards and punishments to form a strategy for operating in its

problem space. In all cases, machine learning tries to replicate the dynamics of its natural counterpart.

The programmer focuses on the efficiency of such processes, rather than the definition of

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

prescriptions for a particular problem that may require thousands of lines of code, such as classifying

images from cats and dogs.

By letting the artificial agent discover the correlations between inputs and outputs on its own, this

approach represents a very powerful solution to exploit data in a broad variety of high-level contexts,

such as autonomous vehicles like drones and self-driving cars, medical diagnostics, creating art,

proving mathematical theorems, playing games like Chess or Go, search engines, online assistants,

image recognition in photographs, spam filtering, predicting flight delays, prediction of judicial

decisions, targeting online advertisements, and energy storage, just to name a few.

AI 101: What is Machine Learning? | Accenture

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

Exercises

Question #1

Which of the following features is a prototype-friendly service like the Arduino IoT Cloud likely to

provide?

https://www.arduino.cc/en/IoT/HomePage
https://www.youtube.com/watch?v=JS4AHSlYm0I

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

☐ An MQTT broker for coordinating communication among peripheral nodes.

☐ Big data analytics to integrate massive amounts of heterogeneous data .

☐ Artificial intelligence for automatic speech recognition .

☐ A driver for a stepper motor.

Question #2

How are web services positioned with respect to the Internet protocol suite?

☐ They sit between the Presentation and Session Layers.

☐ They actually sit an extra layer above the Internet protocol suite, at the level of final user

applications.

☐ They are Data Link Layer protocols.

☐ They offer free or paid services to the Data Link Layer.

Question #3

Certain businesses like Particle, offer complete edge-to-cloud solutions providing advanced functions

like over-the-air firmware updates (see https://docs.particle.io/tutorials/device-cloud/ota-

updates/). What may be the most serious challenge for a web service offering this feature?

☐ Speech recognition, which requires support for a large number of national languages.

☐ Costs, as the human resources committed to over the air firmware updates may scale with the

number of target devices .

☐ Bandwidth, because over the air firmware updates may consume too many computational

resources.

☐ Security, because malicious updates issued by a spoofing hacker may jeopardize a large number of

connected devices in no time.

Question #4

Watch the following video by Reviews.org: The Customizable Way to Automate Your Home | IFTTT

Review which provides a critical review on IFTTT. Which of the following statements may be true?

☐ IFTTT may make use of so-called webhooks, in order to connect two web applications through

custom callback functions.

☐ IFTTT may be used as data logger for simple IoT applications, such as home and garden automation.

☐ IFTTT endows simple devices, such as lightbulbs and sprinklers, with wireless connectivity.

☐ IFTTT is a so-called man-in-the-middle hacker, forging the data exchanged between two web

applications like Instagram and Twitter.

https://docs.particle.io/tutorials/device-cloud/ota-updates/
https://docs.particle.io/tutorials/device-cloud/ota-updates/
https://docs.particle.io/tutorials/device-cloud/ota-updates/
https://youtu.be/p5McvkJYL2s
https://youtu.be/p5McvkJYL2s

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Providers and examples

IoT service providers

Here, we will take a quick journey through a few of the most popular providers of IoT services, at the

time of writing. We will outline their main functionalities and characteristics without the claim of

completeness.

The most famous and used IoT services at the end of 2020, or, we may say, at the dawn of the IoT era,

include the following:

● Google Cloud Platform

● IRI Voracity

● Particle

● Salesforce IoT Cloud

● ThingWorx

● IBM Whatson IoT

● Thinger.io

● Arduino IoT Platform

● Microsoft Azure IoT Suite

● Amazon Web Services IoT Core

● Samsung Artik Cloud

● Oracle IoT

● Cisco IoT Cloud Connect

● Altair SmartWorks

● Plotly

● Temboo

● Carriots

● NearBus

● Ubidots

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@20d5138d41444f29a4b1641b6b78bc53

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Almost all of them are proprietary, commercial services. Some are more oriented to makers or

hobbyists, some to business with a more general purpose or a more specific application in mind. In

general, IoT services may be classified according to their principal scope as:

● Analytics and data visualization, where the main objective is to efficiently collect, analyze and

visualize data;

● Prototype-friendly IoT infrastructure, where it is to easily coordinate communications among edge

devices;

● End-to-end solutions, where it is to seamlessly manage a proprietary system;

● Large scale infrastructure as a service, where it is to offer highest-level functions, often at the

expense of the ease of access.

Let us see some of them in some more detail in the following paragraphs.

Thinger.io

Thinger is an open source platform for the IoT.

Thinger is a FOSS (Free and Open Source Software) system distributed under MIT license, which a

user can download directly from the project repository and install on a personal server while keeping

everything on hand. They also offer a commercial IoT service through the Thinger.io website.

Thinger uses a third party cloud provider. At the moment of writing, the user can choose among

Amazon Web Services, Digital Ocean, Google Cloud and Microsoft Azure.

Things can be connected to the platform using the provided Arduino Client Library, which is

specifically designed for use with the Arduino IDE described in the next session. Therefore, the

user can install it within a familiar environment and seamlessly start connecting devices within

minutes.

It supports multiple network interfaces like Ethernet, Wifi, and GSM, and the user can implement it in

several devices like most of the Arduino boards, but also Espressif, Texas Instruments and

other chips (an exhaustive list can be found on the service website).

The main features of Thinger are:

https://thinger.io/
http://opensource.org/licenses/MIT
https://github.com/thinger-io
https://thinger.io/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● Free IoT platform: Thinger.io provides a lifetime freemium account with only a few limitations

to start learning and prototyping. When a product becomes ready to scale, the user can

deploy a so-called Premium Server with full capacities within minutes;

● Open-source: most of the platform modules, libraries and APP source code are available in a

Github repository to be downloaded and modified with MIT license;

● Simple but powerful: just a couple of lines of code to connect a device and start retrieving

data or controlling its functionalities with a web-based console able to connect and manage

thousands of devices in a simple way;

● Hardware agnostic: any device from any manufacturer can be easily integrated with Thinger.io

infrastructure;

● Extremely scalable and efficient infrastructure: thanks to its unique communication

paradigm, where the IoT server subscribes device resources to retrieve data only when it is

necessary, a single Thinger.io instance is able to manage thousands of IoT devices with low

computational load, bandwidth and latency.

Arduino IoT Cloud

Arduino IoT Cloud is a powerful service, allowing anyone to create IoT applications with just a few

simple steps. With a combination of smart technology, user-friendly interfaces and powerful

features, this service is fit for students, makers, as well as professionals. We will come back to the

Arduino ecosystem in the next session.

The most interesting features of Arduino IoT Cloud platform are:

● Directly linked to the Arduino Create environment to program a broad variety of boards;

● Automatically generated code for integration in Arduino and compatible boards;

● Ideal for building sensor networks;

● Ideal for real-time data monitoring;

● Wi-Fi and LoRa compatibility , among others;

● Building dashboards with a good selection of widgets;

● Creating custom apps by using the Arduino IoT API.

Arduino IoT Cloud allows many methods or protocols of interaction, including HTTP REST API, MQTT,

Command-Line Tools, Javascript, and Websockets. It is a very versatile and dynamic system. For more

details, check their API documentation.

https://www.arduino.cc/en/IoT/HomePage

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Dash and Plotly

Dash is a productive Python framework for building web applications.

Written on top of Flask, Plotly.js, and React.js, Dash is ideal for building data visualization apps with

highly customised interfaces in pure Python. It is particularly suited for anyone who works with data

in Python.

Through a couple of simple patterns, Dash abstracts away all the technologies and protocols that are

required to build an interactive web-based application. Dash is simple enough that a user of Python

can bind a new interface around a code in an afternoon.

Dash apps are rendered in the web browser. The user can deploy apps to servers and then share them

through URLs. Since Dash apps are viewed in the web browser, Dash is inherently cross-platform and

mobile ready.

There is a lot behind the framework. To learn more about how it is built and what motivated Dash,

watch their talk from Plotcon or read their announcement letter.

Dash is an open source library, released under the permissive MIT license.

Plotly develops Dash and offers a platform for managing Dash apps in an enterprise environment.

Plotly.js is a high-level, declarative charting library. Plotly.js ships with over 40 chart types, including

3D charts, statistical graphs, and SVG maps. Plotly is now a part of Dash distribution.

Google Cloud IoT

Google Cloud IoT offers a platform for intelligent IoT services based on Google Cloud, a suite of cloud

computing services that runs on the same infrastructure that Google uses internally for its end-user

products, such as Google Search, Gmail, file storage, and YouTube.

Intelligent means that they stress the data-processing capabilities of the platform. Google Cloud IoT

indeed is a complete set of tools to connect, process, store, and analyze data both at the edge and in

the cloud. The platform consists of scalable, fully-managed cloud services; an integrated software

stack for edge/on-premises computing with machine learning capabilities for all IoT needs.

From an organizational point of view, the IoT service offered by Google Cloud can be separated in two

main parts:

● Cloud IoT Core - Secure device connection and management service for the IoT;

https://plotly.com/dash/
https://cloud.google.com/solutions/iot

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

● Cloud IoT Edge - Brings AI to the edge computing layer.

Although you can have a free test account, the service is quite expensive.

IRI Voracity

Voracity is a high-performance, all-in-one data management platform.

Like other services listed in this section, Voracity is not a specific tool for the IoT, but a data-oriented

platform that is intended to provide a full stack of tools to control data in every stage of their life-cycle

and extract maximum value from them.

Voracity combines data discovery, integration, migration, governance, and analytics in a managed

metadata framework built on Eclipse™. Leverage the proven power of IRI CoSort, Hadoop MR2, Spark,

Spark Stream, Storm, and Tez.

Frontier cases

In the real world, the border between basic and more advanced functions is sometimes blurred, and

so is that among the realms of new technologies like big data analytics and artificial intelligence, and

even the interplay of tasks implemented at edge level and services deployed in the cloud, within a so-

called computational continuum.

Watch the following two videos.

In the first video, Dr Sara Colantonio, of the National Research Council of Italy, provides an overview

over her activities in the context of predictive maintenance in healthcare, where she makes extensive

use of big data analytics in association to artificial intelligence.

In the second video, Dr Davide Moroni, again of the National Research Council of Italy, explains

different projects in the realm of the so-called smart city, where he combines the powers of artificial

intelligence at edge and cloud level according to the specific context. Notice how the use of other

emerging technologies like drones is becoming another powerful enabler for futuristic IoT

applications.

INDEX expert interview: Dr Sara Colantonio

https://www.iri.com/products/voracity

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

INDEX expert interview: Dr Davide Moroni

https://www.youtube.com/watch?v=EOH2TX5qN7Y
https://www.youtube.com/watch?v=ukijy0_qVNk

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

Hands on with microcontrollers

Introduction to microcontrollers

Introduction to Microcontroller Units (MCUs)

In this unit, we begin to describe the use of microcontrollers in appliances that are suitable for

integration in IoT systems. Microcontroller Units (MCUs) are electronic devices integrated in a single

electronic circuit that evolve as a downgrade from microprocessors for applications in embedded

systems or digital control.

While microprocessors are typically found in personal computers, MCUs are used in automatically

controlled products and devices, such as automobile engine control systems, implantable medical

devices, remote controls, office machines, appliances, power tools, toys and other embedded

systems. By optimizing the size and cost with respect to an architecture made of a separate

microprocessor, memory and input/output units, MCUs make it economical to implement digital

control in a broad variety of devices and processes. Mixed signal MCUs are common to integrate

analog components needed to interface to non-digital electronic systems, such as simple transducers.

In the context of IoT, MCUs have become the most economical and ubiquitous means to collect data,

sense and actuate the physical world at the level of edge devices.

Some MCUs may use words as small as four bits and operate at frequencies as low as 4 kHz to achieve

power consumption at the level of single-digit milliwatts or even microwatts. MCUs generally provide

the ability to retain functionality while waiting for an event, such as an internal timer overflow, a

button press, the reception of data over some communication link, or any other kind of interrupt.

During sleep mode with processor clock and most peripherals off, power consumption may be in the

order of nanowatts, thus making this technology well suited for long lasting battery applications. On

the other hand, other MCUs may serve performance-critical roles, and may need to act more like a

Digital Signal Processor (DSP) or to execute and schedule multiple tasks, with higher clock speeds and

power consumption. Indeed, current trends move towards both lower and higher performances, and

a sharp distinction between MCUs and microprocessors is probably becoming ever more arbitrary. An

important example of an intermediate case between MCUs and PCs is single-board computers like the

uber-famous Raspberry Pi and a growing plethora of similar devices.

Table: indicative comparison between MCUs and microprocessors.

Feature MCUs Microprocessors

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@chapter+block@b20d23149bdf4fc78289ad4d68943663
http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@6a00ef6c51f843f1ab53e0cef7feab08

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Maximum clock speed 200 MHz 4 GHz

Maximum processing capacity 200 megaFLOPs 5 gigaFLOPs

Minimum power loss 1 mW 50 W

Typical price per piece 0.5 euros 50 euros

Number of pieces sold per year Order of 10 billion Order of 1 billion

The typical architecture of MCUs provides a set of fixed modules, and a series of possible extensions

depending on the manufacturer, price and range of application.

Common modules:

● Central processing unit (CPU);

● Program memory (ROM, FLASH, EPROM, EEPROM) used to store programs and non-volatile data;

● Data memory (RAM) used to cache volatile data;

● Configurable input/output or general-purpose input/output (GPIO) ports. GPIO pins are

uncommitted digital signal terminals in an integrated circuit or electronic circuit board. Their

behaviour, including whether they act as input or output, is controllable by the user at run time.

GPIO pins have no predefined purpose and are unused by default;

● Interrupt management to suspend ongoing processes and react to certain events with a so-called

interrupt handler or interrupt service routine (ISR), such as an internal timer overflow, completing

an analog to digital conversion, a change of logic level on an input like a button being pushed, and

the reception of data over a communication link. Interrupt management is a distinctive feature of

MCUs especially when power consumption is important as in battery devices. For instance,

interrupts may serve to wake from a low-power sleep state until a peripheral event requires a

reaction;

● Direct Memory Access controller (DMAC) to access the RAM without occupying the CPU.

Additional modules:

● Counters and timers associated to the internal clock;

● An ever broader variety of communication modules, such as Universal Synchronous-

Asynchronous Receiver/Transmitter (USART), Inter-Integrated Circuit I²C, Serial Peripheral

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Interface (SPI), Universal Serial Bus (USB), Ethernet, Infrared Data Association (IrDA) interfaces,

Controller Area Network (CAN) interfaces, Bluetooth, Bluetooth Low Energy, Wi-Fi, Zigbee and

many more. The possibility for direct connectivity represents an obvious great opportunity for

M2M and IoT projects, as we shall see;

● Analog or mixed technology interfaces, such as Analog to Digital Converter (ADC), Digital to Analog

Converter (DAC), Pulse-Width Modulation (PWM), analog comparators, etc.;

● Displays and other control interfaces, such as LCDs and touch sensors.

Figure: STM32F103 R6T6 MCU from STMicroelectronics, CC BY-SA by Golonlutoj

In the next units, we will illustrate the use of some of these modules by means of simple examples.

However, prior to the description of practical examples, we introduce the Arduino ecosystem, which

has become a convenient platform for rapid prototyping of IoT appliances.

Exercise

The LoRaFarm is a LoRaWAN-Based Smart Farming Modular IoT Architecture designed by Internet of

Things (IoT) Lab of the Department of Engineering and Architecture of the University of Parma, Italy,

which is described in the open-access paper entitled LoRaFarM: A LoRaWAN-Based Smart Farming

Modular IoT Architecture. According to the following figure, what hardware solutions may have

plausibly been implemented for the various components?

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:MicroSTM32.jpg
https://doi.org/10.3390/s20072028
https://doi.org/10.3390/s20072028

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: figure 1 from Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. LoRaFarM: A LoRaWAN-Based Smart Farming Modular
IoT Architecture. Sensors 2020, 20, 2028., CC BY-SA by Sensors 2020, 20, 2028

Answers

Only one answer is correct.

☐ MCUs for the end nodes installed in the vineyard for their low power consumption and small

footprint, mini computers for the gateways (GWs) combining LoRa and WiFi connectivity as a decent

compromise between power consumption and computational power, and another MCU for the

Network Server for its support to massive data storage and complex user applications.

☐ MCUs for the end nodes installed in the vineyard for their low power consumption and small

footprint, mini computers for the gateways (GWs) combining LoRa and WiFi connectivity as a decent

compromise between power consumption and computational power, and a standard computer for

the Network Server for its support to massive data storage and complex user applications.

☐ A standard computer for the end nodes installed in the vineyard for its low power consumption,

mini computers for the gateways (GW) combining LoRa and WiFi connectivity as a decent compromise

between power consumption and computational power, and another standard computer for the

Network Server for its support to massive data storage and complex user applications.

☐ MCUs for the end nodes installed in the vineyard for their low power consumption, mini computers

for the gateways (GW) combining LoRa and WiFi connectivity as a decent compromise between power

consumption and computational power, and a standard computer for the Network Server for its low

cost and small footprint.

Arduino

Hardware and shields

The next units of this session will focus on the Arduino ecosystem as a convenient starting point to

see first-hand the use of MCUs in IoT projects. We refer to this platform for its clear vocation

for educational training and for its lively community of enthusiastic users. There exists a large number

of contributed resources and projects based on the Arduino system on the Internet, but, on the flip

side of the coin, we already warn the trainee that not all of those are of the same quality. However,

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s20072028
http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@7f93cdc46a4842a59defe790a9a3494b

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

most of the concepts developed hereafter are applicable to a broad variety of competitive products

as well.

We begin our journey into the Arduino ecosystem by introducing the overall design of its hardware

and principal modules. The Arduino hardware consists of a versatile platform made up of a series of

electronic boards equipped with a MCU. The project was conceived in 2005 by some members of Ivrea

Interaction Design Institute in Italy as an open-source set of tools for rapid prototyping for hobby,

educational and professional purposes. The name originates from that of Arduino d'Ivrea, King of Italy

in 1002.

The Arduino system collectively pursues the quick and easy development of small devices integrating

multiple components, such as LEDs, speed controllers for motors, light sensors, automatisms for

temperature and humidity control and many more, within projects that couple sensors, actuators and

communication. The hardware part combines with a simple Integrated Development Environment

(IDE) for programming, which will be the focus of the next unit. All software and circuit diagrams are

free.

At the time of writing, most Arduino boards consist of an Atmel 8-bit AVR MCU with varying amounts

of flash memory, pins, and features. Single or double-row pins or female headers are used to facilitate

connections for programming and incorporation into other circuits. Additional circuits designed to

plug-in as add-on modules are termed shields. Multiple and possibly stacked shields may be

individually addressable or selectable via an I²C or SPI serial bus, which will be covered in a dedicated

unit. Most boards include a 5 V linear regulator and a 16 MHz crystal oscillator or ceramic resonator.

Arduino MCUs are pre-programmed with a boot loader that simplifies uploading custom programs to

the on-chip flash memory. The default bootloader of the Arduino Uno is the Optiboot bootloader.

Program code is loaded via a serial connection to another computer. Some Arduino boards contain a

level shifter circuit to convert between RS-232 and transistor–transistor logic levels. Current Arduino

boards are programmed via a Universal Serial Bus (USB) port that is implemented using USB-to-serial

adapter chips, such as the FTDI FT232.

The most iconic Arduino board is the Arduino Uno, which is based on the Microchip ATmega328P

MCU. The Arduino Uno is equipped with 14 digital GPIO pins and 6 analog I/O pins also usable as

additional digital pins. 6 of the digital GPIO pins support Pulse-Width Modulation (PWM) output,

which will be discussed in a dedicated unit. Program code is loaded via a type B USB cable. Power is

supplied via the same USB cable or an external power supply unit or a battery pack preferably

providing 7 to 12 V.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: the Arduino Uno board, CC BY-SA by INDEX consortium

Technical specifications for the Arduino Uno:

● Microcontroller: ATmega328P

● Operating Voltage: 5 V

● Input Voltage: 6-20 V

● Digital I/O Pins: 14

● PWM Digital I/O Pins: 6

● Analog Input Pins: 6

● DC Current per I/O Pin: 20 mA

● Flash Memory: 32 KB (ATmega328P) of which 0.5 KB used by bootloader

● SRAM: 2 KB (ATmega328P)

● EEPROM: 1 KB (ATmega328P)

● Clock Speed: 16 MHz

● Footprint: about 69 mm × 53 mm

● Weight: 25 g

A broad variety of alternative Arduino boards are available with different CPUs, GPIO pins, footprint

as well as additional features, such as sensors, a Secure Digital (SD) card slot and on-board

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

communication modules for Wi-Fi, Bluetooth, BLE, LoRa WAN, Sigfox, GSM and Narrowband, for

instance.

The performance of Arduino boards may be specialized and enhanced by the use of printed circuit

expansions called shields, which plug into the female pin headers normally supplied with the main

units. Examples of shields provide direct access to high-level functionality, such as motor controls for

3D printing and other applications, GNSS (satellite navigation), Ethernet, a liquid crystal display (LCD),

breadboarding (prototyping), a SD card slot, or a real-time clock (RTC) chip.

Figure: two shields stacked on an Arduino board, CC BY-SA by INDEX consortium

After introducing the principal components found in the Arduino hardware, in the next unit, we briefly

outline the pathway needed to develop and upload program code that gives control over the

behaviour of its GPIO pins.

Software

In the previous unit, we gave an overview of the principal hardware components available in an

Arduino board, such as the most iconic Arduino Uno. Here, we introduce the issue to develop and

upload program code into one such board, in order to gain access and control over the behaviour of

its GPIO pins.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

In principle, a program for Arduino hardware may be written in any programming language with

compilers that produce binary machine code for its target processor. Atmel provides Atmel Studio,

which is a development environment for their 8-bit AVR and 32-bit ARM Cortex-M based MCUs.

However, the most popular and straightforward approach to program Arduino boards is to exploit the

Arduino Integrated Development Environment (IDE) made available within the Arduino project.

The Arduino IDE is available as both an offline software as well as a more recent online Arduino Web

Editor.

The original offline software is a cross-platform application for Windows, macOS, and Linux that is

written in Java, and originated from the IDE for other languages, such as the Processing and Wiring

projects. It includes standard features for basic IDEs, such as a code editor with utilities such as text

cutting and pasting, searching and replacing text, automatic indenting, brace matching, and syntax

highlighting, and provides simple one-click mechanisms to compile and upload programs to an

Arduino or compatible board. It also contains a message area, a text console, a toolbar with buttons

for common functions and a hierarchy of operation menus, as well as a serial monitor and plotter that

is a convenient interface to send and receive messages from a connected board.

The Arduino IDE supports program code written in C and C++ using special rules for structuring, and

inherits software libraries from the Wiring project to perform common input and output procedures.

A useful reference to the functions, kinds of variables and structures available within the programming

language can be found at https://www.arduino.cc/reference/en. Furthermore, the community has

developed a broad variety of additional libraries that greatly facilitate the implementation of specific

and common tasks, such as M2M communication via standard serial protocols, driving various types

of motors, and many more. A list of official libraries can be found

at https://www.arduino.cc/en/Reference/Libraries. Homemade contributed libraries are available

across many websites and are not always of the same quality. As we shall see from the next unit on,

user-written code needs to contain at least two basic functions, for starting the routine and for cycling

through the main program loop. These functions are compiled and linked with a main () stub into a

cyclic executive program with the GNU toolchain. The Arduino IDE employs the AVRDUDE utility to

convert the executable code into a hexadecimal text that is loaded into the Arduino board by a

bootloader that is present in its firmware.

The online variant of the Arduino IDE is an innovative tool that is part of Arduino Create available

at https://create.arduino.cc/, which is an online platform designed to enable developers to write

code, access tutorials, configure boards, and share projects in a continuous workflow. The Arduino

Web Editor provides all functionalities of the offline software, and saves programs in the cloud and

ensures the most up-to-date version of the IDE, including all contributed libraries and support for new

Arduino boards. However, at the time of writing, support is limited to official Arduino boards, and

https://www.arduino.cc/reference/en
https://www.arduino.cc/en/Reference/Libraries
https://create.arduino.cc/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

certain limitations exist on the total number and size of saved programs and the sum of compilation

time consumed per day.

Figure: Arduino Web Editor, CC BY-SA by INDEX consortium

The Arduino Web Editor comes as a workspace divided into three columns. The leftmost column

shows a list of main menu items:

● Sketchbook is a collection of user-written programs ready for compiling and uploading into a

board connected via a USB cable. Note that programs in the Arduino ecosystem are called

sketches, and we will adhere to this convention hereafter;

● Examples are read-only sketches that demonstrate basic commands, and the behaviour of

libraries;

● Libraries are packages containing functional blocks of program code that can be included in

sketches to provide extra functionalities at higher levels of abstraction. We will present examples

of libraries in the next units;

● Monitor is a feature that enables users to receive and send data to their boards via the same USB

cable used to upload sketches;

● Help provides helpful links and a glossary about Arduino terms;

● Preferences are options to customize the look and behaviour of the editor.

The central column shows lower-level options associated with the menu items listed in the leftmost

column.

Finally, the rightmost column is the so-called code area. Although it does not require much

explanation, this part is the place where most users are likely to spend most time editing, verifying,

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

building and uploading their code into their boards, saving sketches on the cloud, and sharing their

projects with the community. The entire workflow is streamlined for rapid and easy prototyping.

In the next session, we begin to show a simple example of program code that illustrates the general

structure of a sketch for Arduino.

Programming Arduino for basic tasks

Sketches and the blink example

With this unit, we start a series of examples designed to illustrate the execution of basic and common

tasks with an Arduino board, and to show the components needed for their implementation. Premise

that the scope of this series is not a formal introduction into C/C++ nor the optimization of solutions

in terms of performance, but a tutorial overview over the power and limitations of MCUs. In most

cases, examples will consist of a set of hardware parts mounted on a solderless breadboard, and

sketches that dictate the behaviour of one or more Arduino boards. A sketch is a program code written

with the Arduino IDE and saved on the development computer or the cloud as a text file with file

extension .ino.

The compiler needs the Arduino C/C++ program to contain at least two basic functions:

setup(): This function is called only once as soon as a sketch starts or restarts after power-up or reset.

It is often used to initialize variables, the use of GPIO pins as input or output terminals, and libraries

included in the sketch.

loop(): After the setup() function exits or ends, the loop() function executes repeatedly until the board

is powered off or reset. It is as if this function was embedded in a for(;;) infinite loop.

We start to illustrate the structure of an Arduino sketch with the blink example, which is the most

typical program used by beginners to test the use of their Arduino boards. In practice, it is akin to the

Hello, World! example in many other programming ecosystems without a physical interface. Most

Arduino boards integrate an on-board built-in LED connected through a current limiting resistor

between a certain pin, i.e. digital pin 13 in the Arduino Uno, and ground. More generally , the number

of the digital pin attached to the on-board LED is defined across different devices in the Arduino IDE

as LED_BUILTIN. This LED is used as a convenient feature for many tests, program functions and

debugging. In the blink example, the sketch repeatedly turns this LED on for a certain number of

milliseconds and then off for another number of milliseconds, by the use of functions provided by

internal libraries included in the Arduino IDE, such as pinMode(), digitalWrite(), and delay().

Here is a reformulation of the blink example:

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@8196475fe65648d28cbc270385cb38bd

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

boolean ledState = LOW; // Define a variable to store logical level of pin attached

to built-in LED, and initialize it to LOW, i.e. ground

int onTime = 1000; // Define a variable to store time in ms for built-in LED to stay

on…

int offTime = 2000; // … And another variable to store time in ms for built-in LED

to stay off

void setup() // This function is called only once at the beginning of program execution

{

 pinMode(LED_BUILTIN, OUTPUT); // Define digital pin number LED_BUILTIN as

output

}

void loop() // This function is repeatedly called during program execution until

power off or restart

{

 digitalWrite(LED_BUILTIN, ledState); // Set digital pin number LED_BUILTIN to

logical level stored in variable ledState

 if (ledState == HIGH) // If it is high…

 {

 delay(onTime); // … Wait for time established for built-in LED to stay on

 }

 else // Otherwise, here if it is low…

 {

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 delay(offTime); // … Wait for time established for built-in LED to stay off

 }

ledState = !ledState; // Flip logical level stored in variable ledState, i.e. from ground

to +5 V or the other way around

}

When this sketch is loaded on an Arduino board, its on-board built-in LED will turn on for 1 sec, then

off for 2 sec, on again for 1 sec, etc., until the USB cable is removed. Upon reconnection of the USB

cable or plugging of the Arduino board to a wall socket or battery supply, the program will restart from

the beginning, i.e. not from the point left at the time of disconnection.

Figure: power LED (red) and programmable LED attached to pin 13 (green) on an Arduino-compatible clone, CC BY-
SA by Rajib Ghosh

In the next units we will show more complex examples based on Arduino that are intended to give a

general idea of the hardware and software components needed to implement basic and ubiquitous

tasks in digital electronics. However, before we go on, let us open a parenthesis on the simulation of

electronic circuits.

https://commons.wikimedia.org/wiki/File:Power_and_Pin13_LED_on_Arduino_Compatible_Board.jpg

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Simulation of electronic circuits

Sometimes, before starting the physical construction of electronic circuits, it is convenient to make

numerical simulations of their assembly and behaviour. The next video illustrates the use of an

educational tool for the simulation of electronic circuits, such as Autodesk Tinkercad, which is

available as a free program running on a web browser at https://www.tinkercad.com/ .

We recommend the trainee to familiarize with the use of numerical simulations for practice. Most of

the examples described in the next units are suitable for implementation in an environment like

Tinkercad!

Simulation of Simple Circuits with Tinkercad

Disclaimer: this is an embedded video originally posted on YouTube and complying with Standard YouTube License. If you

want to re-use it, you should check the video owner’s copyright terms and conditions before use.

To clarify further, here is the video script:

Hello everybody! My name is Fulvio Ratto and I am a material scientist at the National Research

Council, Italy… and… well, a wannabe maker! Well, in our day-to-day work in our labs, it just happens

that we need to set up small prototypes of electronic devices, such as this mini Wi-Fi camera for time-

lapse movies, for instance. And, sometimes, before we start and assemble our physical devices, it is

https://www.tinkercad.com/
https://www.youtube.com/watch?v=W5Zq5NrykPE

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

just convenient to make numerical simulations of their construction and behaviour. So today we are

talking about the numerical simulation of electronic circuits.

There are many tools out there to simulate electronic circuits. Some are more professional, some are

maybe less. But today I will introduce an option that is extremely easy, surprisingly powerful… and

highly educational, which is Tinkercad. Tinkercad is a free suite of online programs that run on a web

browser, such as Google Chrome. It is owned by Autodesk, which is the supplier of AutoCAD… you

know, the super famous software for computer-aided design. But I believe that its name is a little bit…

misleading, because Tinkercad includes tools for computer-aided design, yes… but also much more.

Such as the possibility to simulate electronic circuits, indeed.

So, let us get started. Let us open a web browser like Google Chrome, and let us type:

www.tinkercad.com, so that will be www.tinkercad.com. First things first, you will need to create an

account, which is super standard, so I am not spending time on that. Then, once you are logged in, as

I am already… Here on the left hand side, you will see a list of tools. You see that my interface is in

Italian. So I tend to assume that yours must be in your national language. Hey… Here is circuiti, or

circuits. Let us click on circuits. And once you go to circuits, you will find a list of your past projects,

which will be empty if it is your first time in Tinkercad. You see that I already have one project. And

here is the place where you can rename, remove or resume your past projects whenever you come

back to Tinkercad. Just try yourself.

But let us create a new project now… By clicking on create a new circuit... something like that. Every

change that we will make to the new circuit will be automatically saved in the list of past projects. So

this will be our workspace. And here on the right hand side, there is a list of components that you

can choose, and a prompt that you can use to search. So, say I want a dc motor… That will be motore

cc in Italian… Oh here it is! And you can just drag and drop your component into your workspace. Say…

something more nerdy… like a shift register… oh my, what is shift register in Italian… Registro

something… oh cool registro a scorrimento an 8 bit. Here it is. And of course you can move or

delete your components. Try yourself. Everything is so intuitive.

So… say we want to add an MC unit like an Arduino Uno board. Micro… Cool. You see that the present

choice is kind of limited. There is only one MC unit or maybe two, which is the Arduino Uno and the

BBC micro:bit for the kids. So, if you need to work with an MC unit that you cannot map into an Arduino

Uno, you are a little bit out of luck with Tinkercad at this time, and you may need something else. But

we are using the Arduino Uno for most of our course. So let us go on. Another piece of hardware that

is ubiquitous is a breadboard… Breadboard… So for those of you who are not familiar with

breadboards… let me briefly come back to myself.

So here is a breadboard, which is a piece of hardware to solderlessly assemble your electronic circuits.

You see that there is plenty of holes that you can use to plug your components. For instance, I have a

transistor here. Or a capacitor. What you need to remember with breadboards is that the holes in

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

each of these semi-columns, as well as the holes in each of these longer rows are connected together.

Let me show you what a breadboard looks like from the inside. Here it is. You got it, right. So, if I plug

a jumper wire from this hole to this one, well now the cathode of my capacitor is connected to the

gate of my transistor. I am not sure whether it makes any sense… And well it is just conventional to

use these longer rows for power, and in particular these red rows for the positive leads and these blue

or black ones for the negative leads. So you see that you can use two power supplies over each

breadboard… like power from the Arduino Uno here… and power from a 9 V battery pack here, for

instance. Like this. Alright. Back to Tinkercad.

So we have a breadboard… and what do we want to do? Say we want to have an LED and a pushbutton,

and we want to make so that the LED stays on when the button is pushed. Simple. So we need an

LED… here it is! A pushbutton… Pulsante in Italian… cool. Ok, what you need to know with pushbuttons

is that their legs on the left end side are always connected together. Their legs on the right end side

are always connected together. But their left and right halves get in contact only when the button is

pushed. It is very usual to plug pushbuttons in such a way to bridge the upper and lower halves of the

breadboard. Like this. Ok, now we need to wire everything up!

Guess what… It is super easy to wire things up in Tinkercad. If you need a jumper wire… Just click once

in the starting hole. Once in the destination hole. And there it is! I think we can keep this one. So let

us be very conventional, and let us connect the negative lead of the Arduino Uno… Or ground, to the

black row of the breadboard. Let us make this wire black. The positive lead of the Arduino Uno… Or

+5V, to the red row of the breadboard. This one will be red. Great! Now let me connect the right end

side of the pushbutton to +5V. Red. And the cathode of the LED to ground through a resistor…

Resistenza. Like that. Let us assign a standard value of 220Ω, which will ensure the ideal current

limitation. You see that the stripes change accordingly. Cool.

Ok. Everything is ready. So what? You see that there is a button here labelled something like start

simulation. Click it. Now we are simulating the behaviour of our circuit. And if we push the button

with our mouse… the LED lights up. Pushed… Released. And we can stop and resume the simulation

whenever we want. And we can even run experiments. For instance, say, let us try to modify our

resistance. Say from 220Ω to… 220kΩ. You see that the LED is much dimmer. Let us try… 220mΩ, now.

Wait! Now Tinkercad is telling us that we are killing our LED. So you understand why it may be useful

to make numerical simulations before physical disasters! We had better come back to… 220Ω.

So now everything works fine… but we are using our Arduino Uno just as a power supply, only! Let us

try to exploit the full power of our MC unit by programming its pins! Let me remove a few wires. There

we go. So… Let me connect the anode of our LED to a GPIO pin… Say pin number 2, that we will use

as digital output. So when we will write a LOW, or ground, to our digital output, the LED will be off.

But when we will write a HIGH, or +5V, it will be on. What about the pushbutton. Let me connect the

left end side to ground. Black. And the right end side to another GPIO pin… Say pin number 4… that

we will use as digital input. So you see. When the button is pushed, our digital input will read a LOW.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

But when it is not pushed, its right end side is actually floating, which we do not like. So let me connect

the right end side of the pushbutton to +5V with a resistor… That I will call a pull-up resistor. And let

me give it a high value… say… 10kΩ. So, when the button is not pushed, our digital input will read a

HIGH. And when it is pushed, a little current will flow through this local loop, and almost all voltage

will drop across our pull-up resistor, so our digital input will read a LOW. But we are not talking physics

today.

Fine. Let us try our simulation. Well nothing happens. Well something is actually happening. As you

may have noticed, there is a built-in LED here that is blinking. And it was already blinking before.

Why? Because our Arduino Uno is pre-programmed with its original firmware that makes the built-in

LED attached to pin number 13 to blink. So we need to replace the original firmware with our own

sketch. And wait! Hey, There is a button here labelled something like code. Click it. And here is the

original firmware. By default, Tinkercad shows this language made of blocks… which is Microsoft

MakeCode, I guess… and is not particularly familiar to me. So let me go to text. Oh, here it is! The good

old blink example! You see there is a setup function and a loop function. But we need to set our own

rules, right?

Let us start with a few definitions. So… int ledPin =… what was it? 2; and… int buttonPin =… 4; right?

In the setup function, let us define the directions of our GPIO pins. So pinMode(ledPin, OUTPUT); and…

pinMode(buttonPin, INPUT); fine. Next, the loop function. So let me remember… we want that when

the button pin reads a LOW, the LED pin sets to HIGH, and vice versa, right? So in practice we want to

write a logical value to our LED pin that is the opposite of that read by the button pin. So it will be…

digitalWrite(ledPin, !digitalRead(buttonPin)); and let me keep a small delay… 10 ms maybe [delay(10);]

which will serve to avoid overwhelming the MC unit. Cool, let us try. Pushed. Released. Pushed.

Released. Great. Like before, but now we are running a sketch.

And this can give a lot more flexibility. For instance, before I finish, let me show you a tool that is very

popular in the Arduino ecosystem, which is a serial monitor. You see, when you are in the code… You

can open a serial monitor. And even a serial plotter. For those of you who are not yet familiar with the

Arduino ecosystem, a serial monitor is a tool to exchange serial messages… in the form of characters…

between… well in this case our virtual board and… yes, our real monitor, through our virtual USB cable.

So, in the setup function we need to initiate our serial communication. Serial.begin(… and we can set

a standard baud rate to… 9600); Hz. And in the loop function, for instance, we can print… to the serial

monitor… the current state of the LED. Serial.println(… this value [digitalRead(ledPin)]); done. Let us

start our simulation. You see. There are values flowing in the monitor… and points drawn in the

plotter. Pushed. Released. Pushed. Released. Pushed. Released. Great! Enough for today!

Let me just recap. I have shown you how to use Tinkercad to simulate the construction and behaviour

of simple circuits starring an Arduino Uno. And I have even taken the opportunity to spend a few

words about some common components, such as a breadboard or a pushbutton, that you will meet

in this course. Well. Just let me finish by telling you that Tinkercad is really powerful and funny… and

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

you must love it if you are interested in the Internet of Things. There is a lot more, like the possibility

to include some common libraries. Unfortunately you cannot load your own, at present. Or the

possibility to add and program multiple boards… and simulate M2M communication, for instance…

you know, things that may become quite expensive in the physical world… So, I hope you enjoyed this

video and please consider to try a tool like Tinkercad for your own practice! So… Thanks for watching

and good-bye!

Digital inputs and a push button example

In this unit, we introduce the concept of digital input and propose a relevant example for the sake of

clarity. A digital pin configured to behave as digital input, upon interrogation, returns the boolean

value HIGH or LOW whether the attached voltage is closest to logical value high, i.e. +5 V in an Arduino

Uno, or ground. When the digital pin is left to float, its reading may flip at random or depend on the

configuration of other pins and onboard components, the proximity of capacitive elements including

the human body, etc.

In this example, digital pin 2 of an Arduino Uno connects to one terminal of a push button or a tactile

switch. The other terminal of the push button connects to ground. When the push button is pressed,

digital pin 2 is grounded and the reading is LOW. In order to make sure that the reading is HIGH in the

opposite case, digital pin 2 is set to connect to an internal pull-up resistor. The figure below displays

the hardware needed in this example.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: hardware for the push button example and relevant diagram explaining the role of the push-up resistor, CC BY-SA by

INDEX consortium

The sketch will ensure that pressing the push button toggles the state of the built-in LED. In practice,

the initial state of the built-in LED is off. A single push turns it on. A second push turns it off again etc.

This use of a push button or a tactile switch raises a common problem, because immediately after its

push or release, the state of a digital pin may bounce multiple times between the logical states HIGH

and LOW before stabilization. The time needed for stabilization depends on the quality of the push

button and may easily extend up to around 50 ms. In the case of our push button example, the impact

of bouncing may be catastrophic. A fortuitously odd number of bounces would result in the desired

swap, but an even number would amount to no swap at all. As far as the swap concerns a built-in LED

in an Arduino board, the user may just settle and try more times. But in other contexts, such as alarm

or security systems etc., one such problem is unacceptable. Bouncing is a common issue, and efficient

debouncing is a typical challenge in digital electronics.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The sketch below is meant to provide the desired functionality and presents a representative solution

for debouncing. This simple sketch already contains different features that belong to C++

programming language, such as the use of functions or conditional constructs as well as referencing

and dereferencing to memory addresses of variables. A thorough understanding of these features is

not required for the scope of these units, which is to give an idea of the typical components and

lower-level issues implied in basic projects based on Arduino. However, the interested reader is

encouraged to use external resources to learn more about programming Arduino boards:

/*

 * Debounce sketch

 * A push button connects to pin 2 and controls the built-in LED

 */

bool ledState = LOW; // current state of the built-in LED initialized to logical level

LOW

const int buttonPin = 2; // number of the digital input pin attached to push button

const int debounceDelay = 100; // delay in ms set to assess stabilization. Change as

needed

bool buttonState; // variable to store consolidated state of push button

bool currentReading; // variable to store current instant reading of push button

bool previousReading; // variable to store last instant reading of push button

long int lastBounceTime; // variable to store last timepoint in ms when instant

reading of push button changed

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // set pin LED_BUILTIN as digital output

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 pinMode(buttonPin, INPUT_PULLUP); // set pin buttonPin as digital input and

activate internal pull-up resistor

 previousReading = digitalRead(buttonPin); // initialize last instant reading

 lastBounceTime = millis(); // initialize last timepoint in ms when instant reading

of push button changed as current timepoint

 buttonState = previousReading; // initialize consolidated state of push button as

last instant reading

}

void loop()

{

 pollButton(buttonPin, debounceDelay, &ledState); // call function pollButton

defined below. This function takes buttonPin, debounceDelay and the memory address

of ledState as parameters, and practically dictates the behavior of the push button and

what variable it toggles. A thorough discussion on the use of pointers to addresses of

variables goes beyond the scope of this module. Please gloss over the exact meaning of

this construct

 digitalWrite(LED_BUILTIN, ledState); // Set pin LED_BUILTIN according to state

stored in ledState

}

void pollButton (int pin, int delay, bool *state)

{

 currentReading = digitalRead(pin); // record current instant reading

 if (currentReading != previousReading) // if it is different from last instant

reading…

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 {

 lastBounceTime = millis(); // … reset last timepoint in ms when instant reading

of push button changed

 }

 if (((millis() - lastBounceTime) > delay) && (currentReading !=

buttonState)) // if instant reading of push button is unchanged for long enough, and it

differs from consolidated state of push button…

 {

 buttonState = currentReading; // … set it as consolidated state of push button,

and…

 if (buttonState == LOW) //… if it is low, i.e. if push button is pressed…

 {

 *state = !(*state); // … toggle value of variable stored at specified memory

address

 }

 }

 previousReading = currentReading; // set last instant reading as current reading.

Here in any case at end of any loop

}

The experimenter may find that a lag a 100 ms may provide too slow a response and a poor

experience. The optimization of the time set to assess stabilization may depend on the actual quality

of the push button and the application of interest. 10 ms may be a more proportionate choice in most

cases.

The instructions designed for debouncing are wrapped in a function named pollButton() that takes

the number of the pin attached to the push button as parameters, the time in milliseconds needed

for stabilization, and the memory address of the global variable toggled upon pushing, and is called

once in the loop() function. Any sketch must at least define the setup() and loop() functions, but

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

nothing prevents the user to add more functions, which is oftentimes an excellent idea to better

structure a complex code.

In the next unit, we introduce another key feature of Arduino boards, which is the possibility to parse

analog inputs.

Exercise

Try to simulate the electronic circuit described in this unit by the use of a tool like Tinkercad. Now try

to attach the push button to GPIO pin number 4 rather than 2.

Which statement is correct?

☐ The same behaviour may be obtained by replacing code line “const int buttonPin = 2;” with “const

int buttonPin = 4;”, only.

☐ The same behaviour may be obtained by replacing code line “const int buttonPin = 2;” with “const

int buttonPin = 4;”, and another choice of debounceDelay, because bouncing primarily depends from

pin to pin.

☐ It is impossible, because LED_BUILTIN is internally attached to GPIO pin number 2

☐ It is impossible, because GPIO pin number 4 cannot serve as a digital input.

Programming Analog inputs and a voltage divider example

In this unit, we introduce the analysis of analog inputs, which are signals that present as a continuous

scale of voltage typically spanning between ground and the operating level of the MCU. Typical

examples of analog signals relate to simple sensors that transduce some physical quantity, such as

humidity, pressure or temperature, into a scale of voltage through some responsive material.

The analysis of analog signals in digital electronics poses some challenges. Arduino boards are usually

equipped with a 10-bit Analog to Digital Converter (ADC) that samples and quantizes an analog value

between ground and their operating voltage into a linear scale from 0 to 1023. Since the operating

voltage of an Arduino Uno is 5 V, the nominal resolution of its ADC is about 4.9 mV. This feature is

accessible in a certain number of analog pins numbered as A0 to A5 in an Arduino Uno. Their analog

reading returns an int between 0 and 1023.

In order to illustrate this feature, we propose a simple project that returns a nonlinear indicator of

environmental light intensity as percent of output signal with respect to limits calibrated by the user.

The hardware shown in the figure below makes use of a photoresistor, which is a low-cost active

component made of semiconducting material that decreases in resistance with received light

intensity. Examples of use may be to assess the proximity of a shadowing object, such as a hand for a

quick proof, the intensity of artificial or sunlight, opening or closing of a box or a drawer, etc. In the

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

dark a photoresistor can have a resistance as high as several megaohms. Instead, in full light its

value can drop to as low as a few hundred ohms. The typical technique used to read the resistance R1

of a variable resistor is a voltage divider, where one end of the photoresistor connects to +5 V and the

other to ground through a fixed-value resistor of resistance R2. Then, the voltage at the intersection

between both resistors reads V = 5 V*R2/(R1+R2) and can be sampled by connecting to an analog pin,

such as A0. In the case of a photoresistor, a reasonable value for R2 is in the order of 10 kΩ, so that V

approaches 0 in the darkness and +5 V in full light.

Figure: hardware for the voltage divider example, CC BY-SA by INDEX consortium

The sketch below provides for a calibration of the sensor in the setup() function, where the user is left

with 5 sec to simulate the lowest and highest levels of light intensity, e.g. by shadowing the

photoresistor by hand. Then the loop() function reads and converts the analog signal as percentage of

the calibrated stroke, and calculates the value of the resistance of the photoresistor, and prints both

values to the serial monitor via the USB cable:

/*

 * Photoresistor sketch

 * Maps the range of analog values from a photoresistor to scale from 0 to 100 and print

the percent to the serial port

 */

const int sensorPin = A0; // select the input pin for the photoresistor

int sensorVal; // variable to store the analog reading

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

int lowestVal = 1023; // variable to store the lower limit of the analog reading in the

calibration step. Initialize this variable to highest value and let the calibration routine to

decrease it by and by

int highestVal = 0; // variable to store the higher limit of the analog reading in the

calibration step. Initialize this variable to lowest value and let the calibration routine to

increase it by and by

int percent; // variable to store analog signal as percentage of calibrated stroke

float R1; // value of photoresistor in kOhm

float R2 = 1.0; // value of fixed resistor in kOhm

void setup()

{

// first, initialize serial communication through the USB cable and set baud rate to 9600

Hz

 Serial.begin(9600);

// calibrate the sensor for the first 5 sec after program start

 Serial.println("Start calibration for 5 sec"); // print this message to the serial

monitor

 while (millis() < 5000) // until 5 sec of program start

 {

 sensorVal = analogRead(sensorPin); // store analog reading in the appropriate

variable

 if (sensorVal > highestVal) // if analog reading is larger than current higher

limit, which will be the case on program start

 {

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 highestVal = sensorVal; // update higher limit

 }

 if (sensorVal < lowestVal) // if analog reading is smaller than current lower

limit, which will also be the case on program start

 {

 lowestVal = sensorVal; // update lower limit

 }

 }

 Serial.println("End calibration"); // here after 5 sec of program start. Print this

message to the serial monitor

}

void loop() {

 sensorVal = analogRead(sensorPin); // store analog reading in the appropriate

variable

 percent = map(sensorVal,lowestVal,highestVal,0,100); // percent will range from

0 to 100 according to a linear conversion of the analog reading. Should the analog

reading be smaller than the lower limit set in the calibration step, e.g. due to a poor

calibration, its value will be set to 0. Seemingly, should the analog reading be larger than

the higher limit set in the calibration step, its value will be set to 100.

 // Next instructions print percentage to the serial monitor

 Serial.print("Reading is ");

 Serial.print(percent);

 Serial.println("% of stroke");

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 R1 = (1023.0 - (float)sensorVal)/(float)sensorVal*R2; // calculate resistance of

photoresistor as a function of floating-point values

 // Next instructions print value of photoresistor in kOhm

 Serial.print("Resistance of photoresistor is ");

 Serial.print(R1);

 Serial.println(" kOhm");

 Serial.println();

 delay(100); // wait 100 ms before another run

}

The experimenter may want to modify the time left for calibration according to the particular

application of interest. Of course, we emphasize that a procedure based on single lowest and highest

records is weak against any source of noise fluctuations, and so any actual application would certainly

require some statistical analysis. Also in this case, we have exploited tools such as the map (value,

fromLow, fromHigh, toLow, toHigh) function that the interested reader is encouraged to study by the

use of external resources. Other features, such as the use of the serial monitor and plotter, will be

shortly resumed later in this series of units.

In the next unit, we introduce the use of digital outputs in a simple example.

Exercise

Try to simulate the electronic circuit described in this unit by the use of a tool like Tinkercad. Now try

to set the resistor in the breadboard to 1 MΩ rather than 1 kΩ, without any other change.

Which statement is correct?

☐ The reading for R1 is actually in MΩ instead of kΩ, and the sensor loses sensitivity especially at

higher brightness.

☐ The reading for R1 is actually in MΩ instead of kΩ, and the sensor gains sensitivity especially at

higher brightness.

☐ The compiler returns an error message, because the reading for R1 is actually in MΩ instead of kΩ.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

☐ The simulator returns a warning, because the sensor goes out of range, and so too much current is

drawn from the power pin.

Digital output and a bar graph example

Another key feature of Arduino boards is the possibility to use its digital and analog pins as voltage

source that may be set at logical value LOW, i.e. ground, or HIGH, i.e. +5V in the Arduino Uno. In

particular, the Arduino Uno is able to supply up to 20 mA of DC current per digital pin, which is

sufficient to power a variety of interesting actuators, such as LEDs, buzzers and small servo motors, or

to control external circuitry via transistors, optocouplers etc.

The next example shows a simple use of a bar graph made up of an array of LEDs that indicate the

position of a potentiometer. A potentiometer is a ubiquitous case of variable resistor that works as

voltage divider in many applications, where the position of its thumbwheel or slider may regulate the

volume of a buzzer, the brightness of a liquid crystal display or serve as rotation transducer, for

example, in a joystick. In the hardware shown in the figure below the central terminal of a

potentiometer divides the voltage drop of 5 V into two parts, and the partition is read as an analog

signal. Then, the sketch provides for the activation of a number of LEDs proportional to the analog

reading. In particular, an array of 6 LEDs are assembled with common anode attached to +5 V. Instead,

their cathodes are individually addressed via digital pins 2 to 7 through as many 220-Ω resistors, which

ensure the appropriate limitation to the current flowing across each diode. Note that digital pins 0

and 1 serve the serial port that is often reserved for communication with the computer through the

USB-to-serial adapter chip, and so their use for other purposes is a second choice.

Figure: hardware for the bar graph example, CC BY-SA by INDEX consortium

/*

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 * Bargraph sketch

 * Turns on a series of LEDs proportional to the value of an analog sensor.

 * Six LEDs are controlled in this example

 */

const int ledPins[] = {2,3,4,5,6,7}; // array of int containing the labels to the digital

pins attached to the LEDs

const int noOfLeds=sizeof(ledPins)/sizeof(ledPins[0]); // number of elements

included in the array. Note that the function sizeof(variable) returns the number of

bytes occupied by the array or variable, and that each int occupies two bytes in the

Arduino Uno

const int potPin = A0; // analog pin attached to the potentiometer

// Swap values of the following two constants if cathodes are connected to gnd and

anodes to the digital pins

const bool LED_ON = LOW; // setting the digital output to LED_ON will turn LED on

const bool LED_OFF = HIGH; // setting the digital output to LED_OFF will turn LED

off

int potVal; // variable to store the analog reading

int ledLevel; // variable to store the number of LEDs to turn on

void setup() {

 for (int led = 0; led < noOfLeds; led++) // for each numeral from 0 to

noOfLeds...

 {

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 pinMode(ledPins[led], OUTPUT); // ... set the pin of the number stored in that

position of ledPins as digital output

 }

}

void loop() {

 potVal = analogRead(potPin); // store analog reading in the appropriate variable

 ledLevel = round(potVal*noOfLeds/1023.0); // calculate the number of LEDs to

turn on

 for (int led = 0; led < noOfLeds; led++) // for each numeral from 0 to

noOfLeds - 1...

 {

 if (led < ledLevel) // ... if that numeral is less than the number of LEDs to turn

on...

 {

 digitalWrite(ledPins[led], LED_ON); // ... set the corresponding pin to

LED_ON, which will turn the attached diode on

 }

 else // otherwise, if that numeral is equal or more than the number of LEDs to

turn on...

 {

 digitalWrite(ledPins[led], LED_OFF); // ... set the corresponding pin to

LED_OFF, which will turn the attached diode off

 }

 }

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 delay(100); // wait 100 ms before another run

}

The style of this sketch makes it super easy to modify the choice of LEDs used in the bar graph by

solely editing, deleting or adding elements into the array of int containing the numbers of the relevant

pins, i.e. line const int ledPins[] = {2,3,4,5,6,7}; . All subsequent instructions are self-consistent. The

use of arrays is another key feature of C++ programming language that we show without additional

explanation. Another variable that the experimenter may want to optimize is the number of

milliseconds left from cycle to cycle according to line delay(100); which governs the responsiveness

of the bar graph.

In the next unit, we will illustrate the counterpart to function analogRead(pin) in the context of

outputting voltage and current, which is analogWrite(pin, value).

Exercise

Try to simulate the electronic circuit described in this unit by the use of a tool like Tinkercad. Now try

to modify the code line “if (led < ledLevel);” as “if (led == ledLevel);”.

Question

Which statement is correct?

☐ Only one LED lights up at a time, or none above a certain threshold, and its brightness is the same

as before.

☐ Only one LED lights up at a time, or none above a certain threshold, and, in most cases, its

brightness is greater than before, because there is less load connected in series.

☐ Only one LED lights up at a time, or none above a certain threshold, and its brightness is

proportional to the value set by the pot.

☐ The simulator returns a warning, because there is no LED to light up above a certain threshold.

Analog output and a DC motor example

Pretty much as in the case of inputs, many applications may require an analog output to control the

functionality of an actuator, such as the intensity of a monochromatic LED, the color of a RGB LED, the

speed of a motor, etc. Most Arduino boards are not natively equipped with the natural counterpart

to their ADC, which is a Digital to Analog Converter (DAC). However, other techniques make it possible

to obtain or simulate an analog output. One possibility may be the use of a potentiometer for manual

adjustment of output voltage. But this solution is likely to be incompatible with many projects based

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

on digital actuation. The main method to replicate an analog output with an Arduino board is pulse-

width modulation (PWM), which is the simulation of an analog level through the duty cycle of a train

of square-wave digital pulses, i.e. the ratio of ON time with respect to sum of ON plus OFF times. For

instance, with an operating voltage of 5 V, a duty cycle of 50% would simulate an output voltage of

2.5 V, a duty cycle of 20% one of 1 V, etc.

Figure: explanation of duty cycle for pulse-width modulation, CC BY-SA by INDEX consortium

In an Arduino Uno, the preset value for the frequency of PWM is about 500 Hz, which corresponds to

a full cycle of ON and OFF times of 2 ms. Such an interval is much faster than the retention time of

images in human retina, i.e. around 60 ms, or the inertia of typical motors, so that PWM represents

an effective alternative to a true analog output in many projects. In Arduino boards, the duty cycle

can be set anywhere from 0 for 0% to 255 for 100%, which is a preset resolution of the internal handler

around 7.8 µs.

The next example shows the use of this technique to control a DC motor. The circuit is outlined in the

figure below . We take this opportunity to mention a few issues that are very common in digital

electronics, and in particular the use of moving parts: that the power drawn from an electrical load as

a DC motor may exceed that available in each pin of an MCU, and that its operation may challenge

the stability and integrity of the electronic circuitry. The first problem is usually solved by the use of a

transistor or an optocoupler, so that the MCU controls a gate, but the electrical load draws power

from an external circuitry that may include a power supply, such as a battery pack. In addition, DC

motors typically require extra care, which is the use of a capacitor that biases the energy drawn when

the coil sets in motion, and a diode that protects the transistor when deceleration causes dangerous

counter-tensions. All these components are sometimes packaged into drivers made available for the

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

application of choice. For instance, the Arduino project supplies a so-called Arduino Motor Shield to

plug onto an Arduino Uno and drive inductive loads such as relays, solenoids, DC and stepping motors.

Figure: hardware for the DC motor example, CC BY-SA by INDEX consortium

The sketch gives access to the speed of the DC motor as percent of maximum through the serial

console.

/*

 * DC motor sketch

 * Commands from the serial port control motor speed: type messages like 80 to set

speed at 80% of maximum. Any other key stops motor

 */

const int motorPin = 3; // motor driver connects to digital pin 3

long percent = 0; // variable to store speed as percent of maximum

char ch; // variable to store each byte received from serial port

long dutyCycle; // variable to store duty cycle of motor driver

void setup()

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

{

 Serial.begin(9600); // initialize serial communication

 Serial.println("Enter percent of duty cycle"); // print instructions to the serial

monitor

}

void loop()

{

 while (Serial.available()) // until bytes are received through the serial console

 {

 ch = Serial.read(); // consume and store byte received

 if(isDigit(ch)) // if byte received is a number

 {

 percent = percent*10+ch-'0'; // accumulate byte received in the appropriate

variable

 }

 delay(1); // leave time to comply with set baud rate

 if (!Serial.available()) // if there is no more byte left. Here if final byte left was

consumed by last call to the Serial.read() function

 {

 dutyCycle = min(percent*255/100, 255); // map and store percent as duty

cycle from 0 to 255 for PWM. Make sure that duty cycle never exceeds 255, for instance,

should user have accidentally typed something like 120

 // Next instructions print duty cycle to the serial monitor

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 Serial.print("Duty cycle = ");

 Serial.println(dutyCycle);

 analogWrite(motorPin, dutyCycle); // set analog output to control motor

driver...

 percent = 0; // ... and reset variable used to accumulate each byte received

from the serial console

 }

 }

}

Of course, the experimenter may try to design a different cipher to control the DC motor, such as the

use of alphabet letters, etc.

After mentioning fingerprint features in the Arduino ecosystem such as functions pinMode(pin,

mode), digitalRead(pin), analogRead(pin), digitalWrite(pin, value) and analogWrite(pin, value), and

before we come to the topic of machine to machine communication and IoT with Arduino boards, in

the next module, we open a brief parenthesis on a ubiquitous tool as libraries.

Exercise

Try to simulate the electronic circuit described in this unit by the use of a tool like Tinkercad. Now try

to replace the 9 V battery with a 3 V coin cell.

Which statement is correct?

☐ The DC motor will go slower, on average, because its power supply will be less.

☐ Nothing happens, because the power supplied to the DC motor depends on the digitalWrite

instruction only.

☐ Nothing happens, because the capacitor is there to compensate for the loss of power supplied to

the DC motor.

☐ The DC motor will go slower, on average, unless code line “dutyCycle = min(percent*255/100,

255);” is changed into “dutyCycle = min(percent*765/100, 765);”, which ensures the adequate

compensation over the entire range from 0 to 100%.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Libraries and another debouncing example

A theoretical definition of library in computer science goes well beyond the scope of this unit, which

is to show what a simple library may look like and how it may be used within a sketch. Without

pretension of formal rigor, a practical definition of library may be that of a chunk of program code and

additional resources, such as documentation, examples, etc. made available within a community of

users, which may be included in any sketch to gain access to higher-level functions, methods and

behaviours.

A list of standard Libraries in the official Arduino distribution can be found

at https://www.arduino.cc/en/Reference/Libraries:

● EEPROM – for reading and writing to non-volatile storage (1 kB in the Arduino Uno);

● Ethernet – for connecting to the internet using the Arduino Ethernet Shield, Arduino Ethernet

Shield 2 and Arduino Leonardo ETH, at the moment of writing;

● Firmata – for communicating with applications on the computer using a standard serial protocol;

● GSM – for connecting to a GSM/GPRS network with the GSM shield;

● LiquidCrystal – for controlling liquid crystal displays;

● SD – for reading and writing SD cards;

● Servo – for controlling servo motors;

● SPI – for communicating with devices using the Serial Peripheral Interface (SPI) bus, which will be

covered in the next unit;

● SoftwareSerial – for serial communication on any couple of digital pins;

● Stepper – for controlling stepper motors;

● TFT – for drawing text, images, and shapes on the Arduino Thin-Film Transistor screen;

● WiFi – for connecting to the I nternet using the Arduino WiFi shield;

● Wire – Two Wire Interface (TWI/I2C) for sending and receiving data over a net of devices or

sensors, which will be covered in the next unit.

Many more libraries are available for download through the Arduino IDE and from dedicated websites.

A library typically consists of a library.cpp text file containing the definition of its functions and

methods written in C++, a library.h text file serving as a header listing the so-called prototypes of those

functions and methods, and a folder collecting examples in the form of library.ino text files ready for

upload into an Arduino board.

https://www.arduino.cc/en/Reference/Libraries

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

In the following sketch, we show how to translate the push button example seen in a previous unit in

terms of program code including a library that may be readily reused in any other sketch.

Let us start with the pushButtonExample.ino text file:

/*

 * Debounce sketch

 * A push button connects to pin 2 and controls the built-in LED

 * Debounce logic is now included in a pushButton library

 */

#include <pushButton.h> // include the desired library code

// The rest of this sketch is almost identical to that seen in a previous unit

bool ledState = LOW;

const int buttonPin = 2;

const int debounceDelay = 100;

pushButton myButton(buttonPin, debounceDelay); // create an instance of

pushButton class attached to desired digital pin and associated to required delay for

debouncing, according to library definition

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

void loop()

{

 myButton.poll(&ledState); // use method poll with memory address of desired state

that shall be toggled upon pushing attached button

 digitalWrite(LED_BUILTIN, ledState);

}

The pushButton.cpp text file contains the program code that sets the functions and methods of the

library, and looks as follows:

/*

 * pushButton.cpp - Library for debouncing push buttons

 * Created by Fulvio Ratto, Aug 31, 2020.

 * Released into the public domain.

 */

#include "Arduino.h" // include standard Arduino library. This library is implicit in

all .ino sketches built under the Arduino IDE

#include "pushButton.h" // this line is needed to import the declaration of all

variables, functions and methods

pushButton::pushButton(int pin, int delay) // constructor of pushButton class.

These lines explains what happens when a user creates an instance of this class

{

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 _pin = pin; // the _pin variable is a so-called private variable used internally within

the library, and may take any name. It is just conventional to start the name of private

variables with symbol _

 _delay = delay;

 pinMode(_pin, INPUT_PULLUP);

 _previousReading = digitalRead(_pin);

 _lastBounceTime = millis();

 _buttonState = _previousReading;

}

void pushButton::poll(bool *state) // definition of method named poll. This program

code is identical to that used in previous push button example

{

 _currentReading = digitalRead(_pin);

 if (_currentReading != _previousReading)

 {

 _lastBounceTime = millis();

 }

 if (((millis() - _lastBounceTime) > _delay) && (_currentReading !=

_buttonState))

 {

 _buttonState = _currentReading;

 if (_buttonState == LOW)

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 {

 *state = !(*state);

 }

 }

 _previousReading = _currentReading;

}

Finally, the pushButton.h file is a header that contains the definition of all variables and the prototypes

of all functions and methods:

/*

 * pushButton.h - Library for debouncing push buttons

 * Created by Fulvio Ratto, Aug 31, 2020.

 * Released into the public domain.

 */

#ifndef pushButton_h // if there is no other library installed with same name

#define pushButton_h // define this library

#include "Arduino.h" // include standard Arduino library

class pushButton // a class is a collection of variables, functions and methods

{

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 public: // public items are called from the main sketch, and include variables,

constructors and methods

 pushButton(int pin, int delay);

 void poll(bool *state);

 private: // private items are used within the library and never become visible to the

user

 int _pin;

 int _delay;

 bool _buttonState;

 bool _currentReading;

 bool _previousReading;

 long int _lastBounceTime;

};

#endif

At first sight, this solution may seem to amount to a very intricate alternative to achieve the same

functionality as in previous push button examples. However, this library is now ready for use in any

sketch and even for distribution among users, who may prefer to manage debouncing at higher level

without the nuisance of writing their own dedicated program code. There are thousands of libraries

out there that have undergone extensive optimization, and may represent a very efficient solution to

perform common tasks. Meanwhile, the experimenter may also stumble across contributed code of

lower quality, and so a word of caution is in order here.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

We are aware that the example developed in this unit is so simple that its justification is hardly

plausible. Its presentation was meant to illustrate the structure and use of libraries within this course,

rather than to create a useful case for broader distribution. In the next units, we will make extensive

use of libraries. Their power will become evident as a fundamental tool to obtain quick access to very

high-level functionality without the need to delve into hundreds of lines of program code and complex

logics or even to understand all subtleties of underlying processes, such as those behind

communication standards. In the absence of libraries, the use of MCUs in M2M communication and

IoT projects would be inaccessible to the non-highly professional specialist.

M2M communication, I2C, SPI and an example

M2M communication is a common situation in the context of applications based on MCUs. Arduino

boards are fit to implement different protocols for M2M communication.

Serial communication is often used for communication between an Arduino board and a PC, but M2M

communication among more boards via the serial port is possible as well. All Arduino boards comprise

at least one serial port, also known as Universal Asynchronous Receiver-Transmitter (UART) or

Universal Synchronous-Asynchronous Receiver/Transmitter (USART). On the Arduino Uno, the pins

devoted to serial communication are number 0 for reception (RX) and 1 for transmission (TX).

Communication between Arduino boards and a PC occurs through an onboard USB/TTL serial

converter chip and a USB cable. The Arduino IDE features a built-in serial monitor for bidirectional

interaction with an Arduino board, which we have already exploited in several previous examples. The

sketch below provides another simple example of communication between an Arduino Uno and a PC

through the serial monitor. When the PC sends any char, the Arduino Uno checks whether it is a digit

and returns the corresponding number of random integers from 1 to 6 and their sum, and so behaves

as a digital dice for use, for instance, to play Chutes and Ladders:

/*

 * Digital dice sketch

 * Generates and print random numbers to the serial port

*/

char ch; // variable to store received character

int number; // variable to store random number

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

int tot = 0; // variable to store cumulative number

void setup()

{

 Serial.begin(9600); // initialize serial communication and set baud rate to 9600 Hz

}

void loop()

{

 if(Serial.available()) // if any byte is received through serial port...

 {

 ch = Serial.read(); // ... consume and store byte received in appropriate

variable

 if (isDigit(ch)) // if it is a number...

 {

 for (int i = (ch-'0'); i > 0; i--) // ... for each numeral counting down from

that number to 1

 {

 number = random(6)+1; // generate and store a random number from

0+1 = 1 to 5+1 = 6

 tot += number; // accumulate number and update appropriate variable

 Serial.println(number); // print random number to serial monitor and

start a new line

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 }

 Serial.print("The total is "); // print message to serial monitor

 Serial.println(tot); // print cumulative number to serial monitor and start a

new line

 Serial.println(); // start another new line for clarity

 tot = 0; // reset cumulative number

 }

 }

}

Serial communication between an Arduino board and an external TTL serial device requires connecting

the Arduino TX pin to the device RX pin, the Arduino RX pin to the device TX pin, and the Arduino

ground to the device ground. Instead, communication to a classical RS232 serial port requires a

RS232/TTL converter, because the RS232 standard operates at +/- 12V, which may damage the

Arduino pins.

The most common protocols for M2M communication among MCUs and TTL serial devices are the

Inter Integrated Circuit (I2C) and the Serial Peripheral Interface (SPI) standards.

I2C is a two-wire serial communication system used between integrated circuits. The typical I2C bus

consists of at least one master and one slave. In the most frequent situation, there is a single master

and multiple slaves. However, multimaster and multi-slave architectures with bus arbitrage can be

used in more complex systems. The bus was developed by Philips in 1982 and the first version of the

protocol was released in 1992.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: connections on a I2C bus, CC BY-SA by INDEX consortium

The I2C hardware requires two serial communication lines:

SDA (Serial DAta) for data;

SCL (Serial CLock) for clock, which makes I2C to be a synchronous bus.

A reference connection to ground and a power supply line Vdd attached to SDA and SCL through pull-

up resistors are needed as well. The protocol reserves 7 bits for addressing a theoretical maximum of

112 different nodes connected on the same bus or mastering 16 special purposes. The transmission

speed in standard mode is 100 kbit / s. Other variants provide as many as 10 address bits or high speed

up to 3.4 Mbit / s. The maximum number of nodes is more often limited by the parasitic capacity

introduced by each device, because the total capacity presented by SDA and SCL must remain below

400 pF. The principal difference between the nodes that serve as master and those that respond as

slave is that the former provide the clock signal while the latter synchronize to the provided meter.

In an Arduino Uno, the I2C protocol is available through analog pins 4 for SDA and 5 for SCL.

SPI is a four-wire communication standard originally conceived by Motorola. Also, in this case,

transmission takes place between a master and one or more slaves, where the former controls the

bus, outputs the clock signal, and decides when to start and end each communication. The SPI bus is

serial but, at variance with the I2C alternative, the communication is full-duplex, because transmission

and reception occur on separate lines.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: connections on a SPI bus, CC BY-SA by INDEX consortium

The SPI hardware requires four serial communication lines:

● SCLK: Serial Clock issued by the master;

● MISO: serial data Master In Slave Out, i.e. input for the master and output for the slave;

● MOSI: serial data Master Out Slave In, i.e. output for the master and input for the slave;

● SS: Slave Select issued by the master to choose which slave it wants to address.

As for the data exchange speed, the maximum limit depends on the specs of each connected device

and their number, since each device adds its parasitic capacity to the communication lines. There are

generally four connection lines that carry information. However, the need for a common connection

to ground brings the total number of wires to five.

With respect to I2C, the main advantage of SPI is faster communication between master and individual

slaves, with clock frequency that may easily exceed tens of MHz. The main disadvantage is the need

to reserve an SS pin for each slave. The SS line is normally active low and, upon disabling with logic

level HIGH, leaves the slave with high impedance output and so completely isolated from the bus.

Therefore, the maximum number of slaves is limited only by the number of possible SS lines that can

be managed by the master.

In an Arduino Uno, the SPI protocol is available through digital pins 13 for SCLK, 12 for MISO, 11 for

MOSI and, most typically, 10 for SS.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

In the next unit, we will discuss an example that makes use of the SPI bus for fastest communication.

Here, we show the use of the I2C bus to establish a serial communication between an Arduino Uno

set as master and another Arduino Uno as slave. The master reads an analog thermometer and sends

the reading to the slave. The slave parses the received reading and prints the temperature in

centigrades to its own serial monitor. The hardware is as shown in the following figure. In practice, an

analog thermometer connects to analog pin A0 of the master board. The SCL line of the master board

connects to that of the slave board, and so is for the SDA line.

Figure: hardware required for I2C communication example, CC BY-SA by INDEX consortium

The sketch for the master board is as follows:

/*

 * I2C_Master

 * Sends sensor data to an I2C slave

 */

#include <Wire.h> // include library that enables I2C communication

const int address = 4; // address for communication to slave

const int sensorPin = A0; // pin attached to analog thermometer

int val; // variable to store analog reading

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

byte firstByte, secondByte; // variables to store values for transmission

void setup()

{

 Wire.begin(); // initialize I2C communication

}

void loop()

{

 val = analogRead(sensorPin); // store analog reading

 firstByte = highByte(val); // work out first value for transmission

 secondByte = lowByte(val); // work out second value for transmission

 Wire.beginTransmission(address); // begin I2C message

 Wire.write(firstByte); // transmit first value to slave

 Wire.write(secondByte); // transmit second value to slave

 Wire.endTransmission(); // end I2C message

 delay(1000); // wait 1 sec before another run

}

And this is the sketch for the slave:

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

/*

 * I2C_Slave

 * Monitors I2C requests, analyzes and prints values to its serial monitor

 */

#include <Wire.h> // include library that enables I2C communication

const int address = 4; // address for communication from master

byte firstByte, secondByte; // variables to store received values

int val; // variable to store analog reading

float temp; // variable to store temp in C

void setup()

{

 Serial.begin(9600); // initialize serial communication to serial monitor

 Wire.begin(address); // join I2C bus

 Wire.onReceive(displayTemp); // displayTemp is a callback function to execute

upon reception of I2C message

}

void loop()

{

 // nothing here, all work is done in displayTemp

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

}

void displayTemp(int number)

{

 while(Wire.available() > 0) // while bytes are there through I2C bus

 {

 firstByte = Wire.read(); // receive first byte

 secondByte = Wire.read(); // receive second byte

 }

 val = word(firstByte, secondByte); // reconstruct analog reading

 temp = (val*5.0/1024.0-0.5)*100.0; // translate analog reading into temp in C,

according to specs

 Serial.print(temp); // print temp in C to serial monitor

 Serial.println(" C"); // print unit and start a new line

}

The wire.h library enables easy access to the I2C bus by the use of simple functions and methods that

hide the complexity of the underlying protocol from view. The corresponding library for the SPI bus is

called SPI.h and will be brought up in the next series of units.

Exercise

Try to simulate the electronic circuit described in this unit by the use of a tool like Tinkercad. Now add

a third board and connect it to the original slave like this: gnd to gnd; A4 to A4; A5 to A5. The complete

setup should be like that in the following figure:

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: Hardware required for I2C communication exercise, CC BY-SA by by INDEX consortium

Modify the sketch of the original master like this:

#include <Wire.h>

const int address2 = 4, address3 = 5;

const int sensorPin = A0;

int val;

byte firstByte, secondByte;

void setup()

{

 Wire.begin();

}

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

void loop()

{

 val = analogRead(sensorPin);

 firstByte = highByte(val);

 secondByte = lowByte(val);

 Wire.beginTransmission(address2);

 Wire.write(firstByte);

 Wire.write(secondByte);

 Wire.endTransmission();

 Wire.beginTransmission(address3);

 Wire.write(firstByte);

 Wire.write(secondByte);

 Wire.endTransmission();

 delay(1000);

}

Leave the sketch of the original slave as is, and load the following sketch into the third board:

#include <Wire.h>

const int address = 5;

byte firstByte, secondByte;

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

int val;

float temp;

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

 Wire.begin(address);

 Wire.onReceive(displayTemp);

}

void loop()

{

}

void displayTemp(int number)

{

 while(Wire.available() > 0)

 {

 firstByte = Wire.read();

 secondByte = Wire.read();

 }

 val = word(firstByte, secondByte);

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 temp = (val*5.0/1024.0-0.5)*100.0;

 digitalWrite(LED_BUILTIN, (temp>50.0));

}

Question

Which statement is correct?

☐ The third board is another slave attached to the original master. The original slave behaves like

before. Moreover, the built-in LED of the new slave lights up when temp exceeds 50°C.

☐ The third board is another master attached to the original slave. The original slave behaves like

before, plus now its built-in LED lights up when temp exceeds 50°C.

☐ The simulator returns a warning, because there are multiple slaves attached in series over the same

bus. Some software may suggest to replace the I2C protocol with the SPI standard, in order to exploit

its option to select one slave at the time.

☐ The compiler returns an error message, because different variables share identical names across

more boards that are interconnected over the same bus.

Using Arduino in IoT projects

HTTP server: overview

In this unit, we describe the overall architecture of a simple IoT project based on an Arduino Uno. An

Arduino board is connected to a LAN via Ethernet, and is configured to behave as an HTTP server that

returns multiple HTML pages displaying the status of its analog and digital inputs and providing control

over its digital outputs. The client may be any browser on a PC connected to the same LAN.

One HTML page will be available at the URL http://192.168.1.177/analog/ to return the rough values

of analog pins A0 to A6, and will automatically refresh every 5 sec through a Meta Refresh method.

An example is shown in the figure below.

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@fc256567f4854ca4b03a397acd6e6661

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: excerpt of the HTML page returned at the URL http://192.168.1.177/analog/, CC BY-SA by INDEX consortium

Another HTML page will be available at the URL http://192.168.1.177/digitalIn/ to display the logical

levels of digital input pins D2 to D5 through the use of graphical images, and will also automatically

refresh every 5 sec through a Meta Refresh method. By connecting to pull-up resistors, these digital

pins will behave as active-low input latches. An example is shown in the following figure, where the

left panel is the initial configuration and the right panel is the pattern returned after pin D3 was

grounded through a jumper wire.

Figure: excerpt of the HTML page returned at the URL http://192.168.1.177/digitalIn/ before and after grounding pin D3, CC

BY-SA by INDEX consortium

http://192.168.1.177/analog/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Finally, an HTML page will be available at the URL http://192.168.1.177/digitalOut/ to return the

configuration of digital outputs D6 to D9, and allow the user to toggle their logical level through a

submit button. An example is shown in the following figure, where the left panel shows some arbitrary

configuration and the right panel is the result obtained after clicking the button corresponding to pin

D8.

Figure: excerpt of the HTML page returned at the URL http://192.168.1.177/digitalOut/ before and after toggling digital

output D8, CC BY-SA by INDEX consortium

Should the client submit a wrong request, such as http://192.168.1.177/anologOut/ , the server will

generate instructions that explain the valid keys, as in the following Figure:

Figure: excerpt of the HTML page returned after a wrong request such as http://192.168.1.177/analogOut/, CC BY-SA by

INDEX consortium

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://192.168.1.177/analogOut/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Note that digital pins D0 and D1 are reserved for possible serial communication to a PC connected

through a USB cable, which may be used for debugging or monitoring all client requests and server

activities. Finally, digital pins D10 to D13 are consumed for SPI connection to the Ethernet module.

Next unit describes the hardware needed to realize this project.

HTTP server: hardware

The market offers a variety of preassembled modules that make it possible for anybody to arrange the

hardware required to create an HTTP server. Here, we used an Arduino Ethernet Shield 2, which is a

device featuring the same standard footprint as an Arduino Uno and ready for plugging into its female

headers with a corresponding set of pass-through connectors that give full access to the underlying

board.

Figure: the Arduino Ethernet Shield 2, CC BY-SA by INDEX consortium

The Arduino Ethernet Shield 2 makes use of the Wiznet W5500 Ethernet chip to provide an IP stack

capable of both TCP and UDP transport layer protocols, and suitable to support up to eight

simultaneous socket connections. An 8P8C socket is available for connection to standard RJ45 cables

with integrated line transformer and also Power over Ethernet enabled for commodity. Connection to

a network hub or router requires a standard CAT5 or CAT6 Ethernet cable, while a twisted-pair cable

may be necessary for indirect use with a PC. The Wiznet W5500 Ethernet chip communicates with the

Arduino UNO through the SPI protocol and consumes digital pins D10 to D13. In particular, digital pin

D10 serves as SS.

Note that the Arduino Ethernet Shield 2 also contains more connectors and an onboard micro-SD card

slot, which may be used, for instance, to store files for serving over the network, which we will not

implement in our example, though. Also, this chip communicates with the Arduino UNO through the

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

same SPI bus with pin D4 as SS. Therefore, it may be advisable to write a high value to this pin when

the micro-SD card slot is not in use.

In order to complete the hardware required for this project, plug an Arduino Ethernet Shield 2 onto

an Arduino Uno and a standard RJ45 cable. Attach the other end of this cable to a network hub or

router. There is nothing more to do. Of course, it would be more meaningful to connect peripherals

as analog sensors to pins A0 to A5, digital sensors to inputs D2 to D5 or actuators to D6 to D9, but

their use is not needed for a functional demonstration of this project. The only other thing that may

be helpful is a jumper wire to verify the reading of the various inputs, for instance, by grounding. In

the next unit, we will provide the sketch for implementing the behaviour outlined in the previous unit.

HTTP server: software

The sketch described in this unit is rather basic, and the interested or experienced reader may try to

delve into its lower-level details. However, the level of complexity of this code is already much higher

than the cases reported in the previous session, and we will propose a description made by chunk

rather than by line as we did before. Our goal is to give a feeling of the structure of a project of this

kind. In particular, some constructs are more complex than a direct use of self-documenting variables

and functions, such as pointers, referencing and dereferencing to locations in memory denoted by

symbols as * and &, etc. We invite the beginner reader to pass over these symbols, and just try to

visualize the overall architecture and behaviour of the sketch. For additional details, please consult

the many resources available on the web.

The overall idea is that the Arduino server is there to listen for HTTP request messages from a generic

client. When a generic client moves forward, the Arduino server receives and parses its HTTP request

message, reads and modifies its configuration as appropriate, through the usual analogRead,

digitalRead or digitalWrite commands, and returns an HTTP response message containing HTML code

to recreate a web page suitable for a human interface.

We will make use of the following libraries, in order to exploit their higher-level functions:

● SPI – to use the Ethernet library in Arduino versions later than 0018;

● Ethernet – to connect and exchange messages to the Internet;

● avr/pgmspace – to store data in flash memory instead of SRAM. An Arduino Uno features 32 kB

of flash memory and 2 kB of SRAM. The flash memory is used to store the program code, and

sometimes its size is superabundant. Instead, the SRAM undergoes rapid saturation in the

presence of lengthy strings. Here, we exploit the capacity of the flash memory to store most of

the HTML code needed to create the web pages of interest. In particular, our HTML code will

contain a small JPEG image of a size of 35 pixels × 35 pixels encoded as a base64 string that alone

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

consumes more than 1.4 kB of computational resources! We have chosen this example also to

give an idea of the scale of the limitations met in highly constrained systems as a MCU, with

respect to a PC, for instance. In more extreme cases, where the phrase extreme may probably

sound to most readers as hyperbolic or ironic, resorting to files written in an SD card may be a

valuable alternative, for instance.

The sketch is strongly based on a project described in ISBN: 9781449313876, which is a classical

reference in the Arduino community.

In practice, the setup() function starts the HTTP server with the appropriate MAC and IP addresses

ready for communication through port 80, and sets the pin modes of the various inputs and outputs,

as usual.

The loop() function sorts the various requests coming from a client, by parsing incoming messages.

First, it checks whether it is a GET or a POST request. GET requests are those explicitly issued by the

user by typing the address of a page as http://192.168.1.177/analog/. POST requests will be

automatically generated by clicking any of a series of interactive buttons available in the digitalOut

page, as we shall see. Next, it parses the next chunk of message, in search of the strings analog,

digitalIn or digitalOut. If any of those is found, it calls relevant functions in charge of the behaviour

of the HTTP server.

In particular, a so-called showAnalog() function reads the analog pins and responds to the client with

a conventional OK message and HTML code that encodes a table as displayed in the figure of the

second previous unit. The HTML code is rather verbose. In order to preserve the SRAM space, all

constant strings needed for its recreation are stored in the flash memory space.

Otherwise, a so-called showDigitalIn() function behaves in a similar way for the digital inputs and

generates a table as shown in the figure of the second previous unit. In order to make the appearance

of this page a little fancier for a human interface, digital readings are represented as a lever up or

down. Lever up is stored as a 35 pixels × 35 pixels JPEG file encoded in a 1408 characters base64 string,

and its transmission is commissioned to a so-called printP() function. Lever down is obtained by

flipping the lever up.

Finally, a so-called showDigitalOut() function manages all requests about the digital outputs. However,

now it will consist of GET, as well as POST requests. Usual GET requests are responded with a table

similar to those above. The difference is the presence of an interactive button per line for toggling the

status of the relevant pin, as is shown in the figure in the second previous unit. Each button is

configured to automatically generate a POST request containing the string digitalOut for rebounding

here, followed by an id number. In turn, the POST kind activates a chunk of code that parses the

message to find the id number and swap the status of the relevant pin.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Wrong messages are forwarded to a showUnknown() function, which prints instructions to the client

like those shown in the figure in the second previous unit.

The sketch also provides for the use of serial communication through a USB cable of principal interest

for debugging.

Here is the complete sketch:

/*

 * Web server multipage sketch

 *

 * Responds to request messages in the URL to show analog and digital inputs and

change digital outputs

 *

 * http://192.168.1.177/analog/ displays analog pin data

 * http://192.168.1.177/digitalIn/ displays digital pin data

 * http://192.168.1.177/digitalOut/ allows changing digital pin data

 *

 */

// preliminary operations: inclusion of libraries, and definition of global variables, i.e.

MAC address of the Arduino Ethernet Shield 2 marked on chip, static IP address of the

Arduino server, and buffer used to store incoming messages, creation of an instance of

server object and client object. Server object will represent the Arduino server ready to

exchange HTTP messages through standard port 80, and client object will be a generic

client

#include <SPI.h>

#include <Ethernet.h>

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

#include <avr/pgmspace.h>

byte mac[] = {0xA8, 0x61, 0x0A, 0xAE, 0x64, 0x60};

byte ip[] = {192, 168, 1, 177};

const int MAX_PAGENAME_LEN = 11;

char buffer[MAX_PAGENAME_LEN+1];

EthernetServer server(80);

EthernetClient client;

// the setup() function enables serial communication, Ethernet connection, activates

the Arduino server, and sets digital pins 2 to 5 as inputs connected to pull-up resistors

and 6 to 9 as outputs initialized as LOW. Begin to use the F() macro to print messages

stored in flash memory

void setup()

{

 Serial.begin(9600);

 Ethernet.begin(mac, ip);

 server.begin();

 delay(1000);

 Serial.println(F("Ready"));

 for(int i = 2; i < 6; i++)

 {

 pinMode(i, INPUT_PULLUP);

 }

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 for(int i = 6; i < 10; i++)

 {

 pinMode(i, OUTPUT);

 digitalWrite(i, LOW);

 }

}

// the loop() function controls the behavior of the Arduino server. A variable isPost is

set to toggle the behavior of the server between read and read/write. If a generic client

connects to the Arduino server with a request message, buffer is flushed and refilled

with request message until first slash. If buffer contains string GET, then variable isPost

is set to false. Otherwise, if string POST is there, it is set to true, which will allow writing

to the digital output, as we shall see. Then, buffer is flushed again and refilled with next

part of request message until second slash. Buffer is parsed again in search for strings

analog, or digitalIn, or digitalOut. If either is found, the showAnalog(), or

showDigitalIn(), or showDigitalOut()function is respectively called. The function

showDigitalOut() depends on variable isPost. If any other string is found instead, the

showUnknown() function is called with buffer as parameter

void loop()

{

 client = server.available();

 if(client)

 {

 boolean isPost;

 while(client.connected())

 {

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 if(client.available())

 {

 memset(buffer, 0, sizeof(buffer));

 if(client.readBytesUntil('/', buffer, MAX_PAGENAME_LEN))

 {

 if(strcmp(buffer, "GET ") == 0)

 isPost = 0;

 else if(strcmp(buffer,"POST ") == 0)

 isPost = 1;

 memset(buffer, 0, sizeof(buffer));

 if(client.readBytesUntil('/', buffer, MAX_PAGENAME_LEN))

 {

 if(strcasecmp(buffer, "analog") == 0)

 showAnalog();

 else if(strcasecmp(buffer, "digitalIn") == 0)

 showDigitalIn();

 else if(strcmp(buffer, "digitalOut")== 0)

 showDigitalOut(isPost);

 else

 showUnknown(buffer);

 }

 }

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 break;

 }

 }

 delay(1);

 client.stop();

 }

}

// the showAnalog() function prints text to the serial port and a HTTP message to the

client. HTTP message consists of a standard header and a HTML code to create a web

page. A meta refresh instruction imparts automatic refresh every 5 sec. Title of web

page is Multi-page example-Analog. Its first line consists of headline Analog pins. Then,

there begins a table. For each analog input pin i, first column states Analog pin i, and

second column reports the analog reading for pin i. Then, a new line begins for next pin

void showAnalog()

{

 Serial.println(F("Analog"));

 client.println(F("HTTP/1.1 200 OK"));

 client.println(F("Content-Type: text/html"));

 client.println();

 client.println("<meta http-equiv=\"refresh\" content=\"5\">");

 client.print(F("<html><head><title>"));

 client.println(F("Multi-page example-Analog"));

 client.println(F("</title><body>"));

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 client.println(F("<h2>Analog Pins</h2>"));

 client.println(F("<table border='1'>"));

 for(int i = 0; i < 6; i++)

 {

 client.print(F("<tr><td>analog pin "));

 client.print(i);

 client.print(F("</td><td>"));

 client.print(analogRead(i));

 client.println(F("</td></tr>"));

 }

 client.println(F("</table></body></html>"));

}

// base64 code to create an image representing the state of digital pins as a lever up or

turned upside down. Data are stored in flash memory

static const unsigned char leverUp[] PROGMEM =

"/9j/4AAQSkZJRgABAQEAlgCWAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEB

QoHBwYIDAoMDAsK"

"CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFB

QkUDQsNFBQUFBQU"

"FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/

wAARCAAjACMDASIA"

"AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAg

EDAwIEAwUFBAQA"

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

"AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJico

KSo0NTY3"

"ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl

5iZmqKjpKWm"

"p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8Q

AHwEA"

"AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQ

J3AAECAxEEBSEx"

"BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5Ok

NERUZHSElK"

"U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqK

mqsrO0tba3"

"uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRA

xEAPwD9U64v"

"4oePpPBXhu5k0u1Gq+IJAIrHT153yscAuAQdq8seQdqn6jovEWpNpWkzzx/63G1OOjHv

+HX8K8Tu"

"vCth8SppND1pZLiy1DcspVyrg4JDhuzAgEH2rOopODUN+h3YGVCGKpyxSvTUlzddL66X

V/S6v3W5"

"57+zP+1h46+I3ii6tvFukaamhC5+xNqFqRC9tcFWZU2FiXBCNnA46k4FfX6sJFDKQysMg

g5BFfK3"

"hz9knwt8C7o6zpl/qGp3UsuyIXzJth+VssAqjLYJGfc8entfw11qV99hId0WC0ef4T3H0PX

8PeuD"

"L6eJp0bYp3l63PquMMVk2MzN1cihyUbLaLir9dG3+np1ff0UUV6Z8OYXjSB5tBmKAnyy

HOPTkE/h"

"nP4V5DY3k2l30VxC2yWJsqa95dRIrKw3KwwQe4rgNe+GjyStLpsi7Sc+TIcEfQ9/xoGjlte

8VXni"

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

"COKO4EapGchY1xk+p5re+Gdu76g0gHyopZj9Rgf1qtZ/DXVJpgJhHbpnlmcN+QFeiaHodt

oNmILc"

"ZJ5eRvvOfegZo0UUUEhRRRQAUUUUAFFFFAH/2Q==";

// the showDigitalIn() function is similar to the showAnalog() counterpart. Title of web

page now is Multi-page example-Digital in. Its first line consists of headline Digital Pins.

Then, there begins a table. For each digital input pin i, first column of table states Digital

pin i, and second column contains an image with payload made of the base64 code for

lever up, which is left as is or turned upside down according to digital reading of pin i.

The base64 code is segmented and transmitted through the prntP() function defined at

the end of the sketch. Then, a new line begins for next pin

void showDigitalIn()

{

 Serial.println(F("Digital in"));

 client.println(F("HTTP/1.1 200 OK"));

 client.println(F("Content-Type: text/html"));

 client.println();

 client.println("<meta http-equiv=\"refresh\" content=\"5\">");

 client.print(F("<html><head><title>"));

 client.println(F("Multi-page example-Digital in"));

 client.println(F("</title><body>"));

 client.println(F("<h2>Digital Pins</h2>"));

 client.println(F("<table border='1'>"));

 for(int i = 2; i < 6; i++)

 {

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 client.print(F("<tr><td>digital pin "));

 client.print(i);

 client.print(F("</td><td>"));

 client.print(F("<img src=\"data:image/jpg;base64,"));

 printP(leverUp);

 if(digitalRead(i) == LOW)

 client.print(F("\" style=\"transform:scaleY(-1);\">"));

 else

 client.print(F("\">"));

 client.println(F("</td></tr>"));

 }

 client.println(F("</table></body></html>"));

}

// the showDigitalOut() function is more complex and depends on the kind of request

message, i.e. whether it was a GET or a POST message. In case of POST message, there is

extra code. Request message is parsed to find string pinD. Following number is stored in

variable pin, and corresponding output is toggled.

// Next part is same for GET and POST cases, and also resembles the showDigitalIn()

function, i.e. instructions to send HTML code and create a web page. Title of the web

page is Multi-page example-Digital out. Its first line consists of headline Digital Pins.

Then, there begins a table. For each digital output pin i, first column states Digital pin i,

second column hosts an HTML button labelled Toggle to generate a POST request

containing string pinD plus i, and third column hosts same icon as above. Then, a new

line begins for next pin

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

void showDigitalOut(boolean isPost)

{

 Serial.println(F("Digital out"));

 if(isPost)

 {

 Serial.println("POST request");

 client.find("\n\r");

 Serial.print(F("Pin to toggle: D"));

 while(client.findUntil("pinD","\n\r"))

 {

 int pin = client.parseInt();

 Serial.println(pin);

 digitalWrite(pin, !digitalRead(pin));

 }

 }

 client.println(F("HTTP/1.1 200 OK"));

 client.println(F("Content-Type: text/html"));

 client.println();

 client.print(F("<html><head><title>"));

 client.println(F("Multi-page example-Digital out"));

 client.println(F("</title><body>"));

 client.println(F("<h2>Digital Pins</h2>"));

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 client.println(F("<table border='1'>"));

 for(int i = 6; i < 10; i++)

 {

 client.print(F("<tr><td>digital output "));

 client.print(i);

 client.print(F("</td><td>"));

 client.print(F("<form action='/digitalOut/' method='POST'><p><input

type='hidden' name='pinD"));

 client.print(i);

 client.print(F("'><input type='submit' value='Toggle'/></form>"));

 client.print(F("</td><td>"));

 client.print(F("<img src=\"data:image/jpg;base64,"));

 printP(leverUp);

 if(digitalRead(i) == LOW)

 client.print(F("\" style=\"transform:scaleY(-1);\">"));

 else

 client.print(F("\">"));

 client.println(F("</td></tr>"));

 }

 client.println(F("</table></body></html>"));

}

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

// the showUnknown() function takes a string as parameter. Remember that, according

to the showDigitalOut() function, the string passed is a wrong page name. This function

sends HTML code to create a web page with title Multi-page example-Unknown Page,

headline Unknown page, a line with the wrong page name, and more lines explaining

valid keys

void showUnknown(char *page)

{

 Serial.print(F("Unknown: "));

 Serial.println(page);

 client.println(F("HTTP/1.1 200 OK"));

 client.println(F("Content-Type: text/html"));

 client.println();

 client.print(F("<html><head><title>"));

 client.println(F("Multi-page example-Unknown Page"));

 client.println(F("</title><body>"));

 client.println(F("<h2>Unknown page</h2>"));

 client.println(page);

 client.println(F("
Valid keys are:
analog;
digitalIn;
digitalOut"));

 client.println(F("</body></html>"));

}

// the printP() function takes one string as parameter. In practice, this function copies

segments of a string stored in flash memory into a buffer of 32 bytes for passing to the

client

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

void printP(const unsigned char *str)

{

 // from webduino library Copyright 2009 Ben Combee, Ran Talbott

 uint8_t buffer[32];

 size_t bufferEnd = 0;

 while(buffer[bufferEnd++] = pgm_read_byte(str++))

 {

 if(bufferEnd == 32)

 {

 client.write(buffer, 32);

 bufferEnd = 0;

 }

 }

 if(bufferEnd > 1)

 client.write(buffer, bufferEnd - 1);

}

Uploading this sketch into an Arduino Uno and using a browser to send request messages as

http://192.168.1.177/analog/ , http://192.168.1.177/digitalIn/ and http://192.168.1.177/digitalOut/

recreates the web pages shown in the first unit of this series.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

HTTP server: conclusions

In this series of units, we have covered the creation of an infrastructure for an Arduino server, but we

have not addressed its connection with actual sensors or actuators. Possibilities are innumerable, and

may include, for instance, the hardware required to gain full control over a greenhouse, a production

line, a safety system, etc.

In addition, of course, the Arduino board may be easily programmed not only to cover the human

interface by serving web pages, but also, for instance, to make computations at edge level, or to

actuate automatic actions within a local area network, such as to get safe conditions in case of

anomalies.

Meanwhile, this project casts light on typical limitations of a simple HTTP server, such as the need for

frequent polling to identify critical events that may deserve a timely reaction on the human side, which

may be a very inefficient way to discover rare changes in analog or digital input signals.

In the next series of units, we present another example of a project that provides a very

complementary overview over the use of Arduino boards in IoT systems.

Exercise

Suppose someone wants to split the Analog Pins page into two separate pages, in order to monitor

sensors attached to analog pins 0 to 2 in one page, and 3 to 5 in another one, for whatever reason.

What main modifications are needed?

Only one answer is correct.

☐ To modify the sketch in a few parts: to work up the innermost conditional in the loop() function, to

update code line for(int i = 0; i less-than 6; i++) in the showAnalog() function, and to create another

item similar to the showAnalog() function.

☐ To modify the sketch in a few parts: to update code lines for(int i = 2; i less-than 6; i++) in the setup()

function and for(int i = 0; i less-than 6; i++) in the showAnalog() function, and to create another item

similar to the showAnalog() function {No, the setup() function is fine as is}.

☐ To write a new sketch from scratch, because the design of the current code is inherently not

scalable {No, the current sketch is fit to accommodate more pages without major modification}.

☐ To stack another Arduino Ethernet Shield 2, and to modify the sketch in a few parts: to define more

MAC and IP addresses, and to duplicate the showAnalog() function {No, the hardware is fine as is}.

Voice-controlled TV: overview

In this series of units we present a project that differs from the previous case in many respects.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Instead of a general-purpose platform, its scope targets a narrow set of high-level tasks. And instead

of a self-sufficient approach, its implementation makes extensive use of external services to include

off-the-shelf tools made available in top-tier infrastructures like Amazon Web Service and Arduino IoT

Cloud Service. At the time of writing, the resources implemented in this project are offered free of

charge, but an extensive use of external services implies compromising on dimensions such as

autonomy and control. In addition, each service may require committing to its specific standards, and

the concatenation of more services may entail interfacing different APIs and communication

protocols, such as HTTP2 and MQTT. The upside is that most of the underlying complexity may be

overlooked and the focus be kept on the particular behaviour of the edge device. The code dictating

such behaviour may be sometimes secluded within so-called callback functions triggered by

predefined communication events.

We have chosen this project because we believe that it represents well a typical scenario where an

engineer may opt to optimize on resources by leaning on external services, and so to act within a

preset framework to perform a specific task of great added value. We put together many of the

concepts seen in previous sections of this module, such as the use of different data link layer

technologies, i.e. WiFi and IR light, different application layer protocols, i.e. HTTP2 and MQTT, and

services of a different profile, i.e. large-scale Infrastructure as a Service such as Amazon Web Service

and prototype-friendly solutions like Arduino IoT Cloud Service.

Figure: voice-controlled TV: topology, CC BY-SA by INDEX consortium

In a nutshell, this project makes use of Amazon Alexa virtual assistant and an Arduino Nano 33 IoT

board to gain full control over a standard TV via speech recognition.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The overall system is such that a smart speaker such as an Amazon Echo Dot recognizes the keyword

“TV”, and connects as an endpoint to the Amazon Voice Service of Amazon Web Service via HTTP2.

Next, the Amazon Web Service connects through a so-called lambda function to the Arduino IoT Cloud

Service as another endpoint, and modifies a virtual set of TV properties via HTTP2. At that moment,

the Arduino IoT Cloud Service behaves as a broker and forwards such events to an Arduino client via

MQTT. The Arduino client is an edge device hosting an IR LED and programmed to emulate the

ordinary control. In other words, it flashes according to a consumer protocol hacked in a preliminary

step. The code governing the Arduino remote is secluded in a callback function embedded in a general

template that was passed to the Arduino online IDE from the Arduino IoT Cloud Service at the time of

its configuration.

This project takes much inspiration from that published at create.arduino.cc-projecthub with

modifications. An interesting overview over the use of the Alexa Voice Service is available

at developer.amazon.com-alexa-voice-service . An introduction to the Arduino IoT Cloud Service is

available at https://www.arduino.cc/en/IoT/HomePage , and we encourage the experimenter to

explore relevant tutorials, such as that illustrated

at https://create.arduino.cc/projecthub/133030/iot-cloud-getting-started-c93255 .

Voice-controlled TV: IR remote decoder: hardware

This project is made up of two parts.

The first part is devoted to the development of an IR remote decoder intended to hack and decipher

the signals sent from an ordinary remote, by the use of an IR receiver. Once decoded, we will assemble

an Arduino remote designed to emulate these signals by flashing the same pattern of IR pulses for

each command, such as volume up, or channel 9, etc. This approach is probably the simplest path to

control a standard TV with an Arduino board, thanks to a contributed library named IRremote, as we

shall see.

The hardware needed for the IR remote decoder is very simple.

https://create.arduino.cc/projecthub/313276/full-control-of-your-tv-using-alexa-and-arduino-iot-cloud-9e7c4d?ref=tag&ref_id=alexa&offset=4
https://developer.amazon.com/it-IT/docs/alexa/alexa-voice-service/api-overview.html
https://www.arduino.cc/en/IoT/HomePage
https://create.arduino.cc/projecthub/133030/iot-cloud-getting-started-c93255

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: hardware required for the IR remote decoder, CC BY-SA by INDEX consortium

We make use of an Arduino Nano 33 IoT board. This board features a low power Arm Cortex-M0 32-

bit SAMD21 MCU, a low power u-blox NINA-W10 chipset operating in the 2.4-GHz range for WiFi and

Bluetooth connectivity, and a Microchip ECC608 crypto chip for secure communication. Note that the

operating voltage of the Arduino Nano 33 IoT board is 3.3 V, instead of 5 V as the Arduino Uno. In this

part of the project, we don’t need WiFi or Bluetooth connectivity. Such functionality will come in

handy when mounting the Arduino remote, though. A generic IR receiver connects to digital pin 11 of

the Arduino Nano 33 IoT board. Common IR receivers consist of a photodiode, a preamplifier and an

IR filter assembled in a miniature frame, and return a demodulated output from a PWM signal with

standard carrier frequency of 38 kHz.

Voice-controlled TV: IR remote decoder: software

The sketch used to manage the IR remote decoder makes extensive use of the IRremote library that

may be found at https://github.com/z3t0/Arduino-IRremote. In particular, the sketch reported below

returns the consumer IR code as raw data, as we will briefly explain soon below:

// preliminary operations: inclusion of the IRremote library, definition of digital pin

attached to the IR receiver, and instanciation of an IRrecv object

#include <IRremote.h>

int recvPin = 11;

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/z3t0/Arduino-IRremote

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

IRrecv irrecv(recvPin);

// the setup() function enables serial communication and starts the IR receiver

void setup()

{

 Serial.begin(9600);

 irrecv.enableIRIn();

}

// the loop() function creates a structure to store data. If an IR code is grabbed, data are

parsed through the function dumpCode(), which will output results as source code. A

blank line is printed to the serial monitor. And the IR receiver is resumed

void loop()

{

 decode_results results;

 if(irrecv.decode(&results))

 {

 dumpCode(&results);

 Serial.println("");

 irrecv.resume();

 }

}

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

// the dumpCode() function prints to the serial monitor an array of unsigned int named

rowData that contains a representation of the IR code. The comma after entries of odd

index in the final array is followed by a space

void dumpCode (decode_results *results)

{

 Serial.print("unsigned int rawData[");

 Serial.print(results->rawlen - 1, DEC);

 Serial.print("] = {");

 for(int i = 1; i < results->rawlen; i++)

 {

 Serial.print(results->rawbuf[i] * USECPERTICK, DEC);

 if(i < results->rawlen-1)

 Serial.print(",");

 if(!(i & 1))

 Serial.print(" ");

 }

 Serial.print("};"); //

}

After the sketch is loaded into the Arduino Nano 33 IoT board, and the serial monitor is opened,
pointing the ordinary remote to the IR receiver and pushing, for instance, the power button would
generate a printout similar to:

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1700, 600,550,

600,500, 650,500, 650,500, 650,500, 600,1700, 600,1700, 600,550, 600,1650,

600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550, 600,550, 600,1650,

600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650, 650,1650, 600,550,

600,1650, 650,1650, 600,1700, 600,1650, 600};

This array suggests that the particular remote used in this example makes use of NEC protocol, which

encodes logical ones as a train of PWM pulses of a duration of about 560 µs at a carrier frequency of

38 kHz and typical repetition rate between 1/4 and 1/3, followed by a pause of 1690 µs, and logical

zeros as a train of PWM pulses around 560 µs and a pause of 560 µs.

Figure: logical ones and zeros according to NEC protocol, CC BY-SA by INDEX consortium

The full sequence begins with a train of PWM pulses around 9.0 ms, a pause of 4.5 ms, and then four

bytes carrying instructions, and a final train of PWM pulses of 560 µs. Out of the four bytes carrying

instructions, only the first and the third actually convey information, and respectively encode the

address of the intended receiver and the desired command. The second and fourth bytes are the

logical inverse of the first and the second, respectively, and serve both to identify errors and to

standardize the duration of the entire sequence. There exists additional code for special conditions,

such as repeated commands, etc. that we overlook at this time.

Figure: example of command according to NEC protocol, CC BY-SA by INDEX consortium

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

The IRremote library returns results as a buffer containing the duration in µs of all trains of PWM

pulses and pauses, in the order as received. So, the binary representation of the four bytes carrying

information in the example tested above would read 00100000, 11011111, 00010000, 11101111.

Repeating the same operation for buttons power, channels from 0 to 9, mute, volume up, volume

down, channel up, channel down; and copying and pasting each printout into a text file with

appropriate headings would generate a content similar to:

Power

unsigned int rawData[67] = {9150,4500, 0600,550, 600,550, 600,1700,

600,550, 600,500, 650,500, 650,500, 650,500, 600,1700, 600,1700, 600,550,

600,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550, 600,550,

600,1650, 600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650, 650,1650,

600,550, 600,1650, 650,1650, 600,1700, 600,1650, 600};

1

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1650, 650,500,

650,500, 600,550, 650,500, 600,550, 600,1700, 600,1650, 650,500, 650,1650,

600,1700, 600,1650, 600,1700, 600,1700, 600,1650, 600,550, 600,550, 600,550,

600,1700, 600,550, 600,550, 600,500, 650,500, 650,1650, 600,1700, 600,1650,

600,550, 650,1650, 600,1700, 600,1650, 600};

2

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1700, 600,550,

600,500, 650,500, 650,500, 650,500, 650,1650, 600,1700, 600,550, 600,1650,

600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,1650, 600,550, 600,550,

600,1700, 600,550, 600,550, 600,550, 600,1650, 600,550, 600,1700, 600,1700,

600,500, 650,1650, 600,1700, 600,1650, 600};

3

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

unsigned int rawData[67] = {9150,4550, 600,500, 650,500, 650,1650, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 650,1650, 600,550, 600,1700,

600,1650, 650,1650, 600,1700, 600,1650, 600,1700, 600,1650, 650,500, 600,550,

650,1650, 600,550, 600,550, 600,550, 600,550, 600,550, 600,1650, 650,1650,

600,550, 600,1700, 600,1650, 600,1700, 600};

4

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1650, 650,500,

650,500, 650,500, 650,500, 600,550, 600,1700, 600,1650, 650,500, 650,1650,

600,1700, 600,1650, 600,1700, 600,1700, 600,550, 600,550, 600,1650, 600,550,

600,1700, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,550, 600,1650,

650,500, 650,1650, 600,1650, 650,1650, 600};

5

unsigned int rawData[67] = {9150,4550, 600,550, 600,550, 600,1650, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650, 600,550, 600,1700,

600,1650, 650,1650, 600,1700, 600,1650, 600,1700, 600,550, 600,1700, 600,500,

650,1650, 600,550, 600,550, 600,550, 600,550, 600,1700, 600,550, 600,1650,

600,550, 600,1700, 600,1650, 650,1650, 600};

6

unsigned int rawData[67] = {9150,4550, 600,550, 600,500, 650,1650, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 650,1650, 600,550, 600,1700,

600,1650, 650,1650, 600,1700, 600,1650, 600,550, 600,1700, 600,1650, 650,500,

650,1650, 600,550, 600,550, 600,550, 600,1650, 650,550, 600,500, 650,1650,

600,600, 550,1700, 600,1650, 600,1700, 600};

7

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1700, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,550, 600,1650,

650,1650, 600,1700, 600,1650, 600,1700, 600,1700, 600,1650, 600,1700,

600,550, 600,1650, 650,500, 650,500, 600,550, 650,500, 600,550, 600,550,

600,1700, 600,550, 600,1650, 600,1700, 600,1700, 600};

8

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1650, 650,500,

650,550, 600,500, 650,500, 600,550, 600,1700, 600,1700, 600,550, 600,1650,

600,1700, 600,1650, 600,1700, 600,1700, 600,550, 600,550, 600,500, 650,1650,

600,1700, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,1650, 650,550,

600,500, 650,1650, 600,1700, 600,1650, 600};

9

unsigned int rawData[67] = {9150,4550, 600,550, 600,500, 650,1650, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 650,1650, 600,550, 600,1700,

600,1650, 600,1700, 600,1700, 600,1650, 600,1700, 600,550, 600,550, 600,1650,

600,1700, 600,550, 600,550, 600,550, 600,550, 600,1650, 650,1650, 600,550,

600,550, 600,1700, 600,1650, 600,1700, 600};

0

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1700, 600,550,

600,500, 650,500, 650,500, 650,500, 650,1650, 600,1700, 600,550, 600,1650,

600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550, 600,550, 600,550,

600,1650, 600,550, 600,550, 600,550, 600,1700, 600,1650, 650,1650, 600,1700,

600,500, 650,1650, 600,1700, 600,1650, 650};

Mute

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

unsigned int rawData[67] = {9150,4500, 650,500, 600,550, 650,1650, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,550, 600,1650,

650,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550, 600,1650,

600,550, 600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650, 600,550,

600,1700, 600,1650, 600,1700, 600,1700, 600};

Vol +

unsigned int rawData[67] = {9150,4550, 600,550, 600,550, 600,1650, 650,500,

600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650, 650,500, 600,1700,

600,1700, 600,1650, 600,1700, 600,1650, 650,500, 650,1650, 600,550, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 600,550, 650,1650, 600,1700,

600,1650, 600,1700, 600,1650, 650,1650, 600};

Vol -

unsigned int rawData[67] = {9150,4500, 600,550, 600,550, 600,1650, 650,500,

650,500, 600,550, 650,500, 600,550, 600,1700, 600,1650, 650,500, 650,1650,

600,1700, 600,1650, 600,1700, 600,1700, 600,1650, 600,1700, 600,550, 600,550,

600,550, 600,550, 600,550, 600,550, 600,550, 600,500, 650,1650, 600,1700,

600,1650, 650,1650, 600,1700, 600,1650, 600};

Pr +

unsigned int rawData[67] = {9150,4500, 650,500, 650,500, 600,1700, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,550, 600,1700,

600,1650, 600,1700, 600,1650, 650,1650, 600,550, 600,550, 600,550, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,1700, 600,1650,

600,1700, 600,1700, 600,1650, 600,1700, 600};

Pr -

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

unsigned int rawData[67] = {9150,4500, 650,500, 600,550, 650,1650, 600,550,

600,550, 600,550, 600,550, 600,550, 600,1650, 650,1650, 600,550, 600,1700,

600,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550, 600,550,

600,500, 650,500, 650,500, 650,500, 600,550, 650,1650, 600,1700, 600,1650,

600,1700, 600,1650, 650,1650, 600,1700, 600};

With this information, we are ready to assemble and instruct the Arduino remote.

Voice-controlled TV: Voice-controlled remote: hardware

After we have decoded the ordinary remote, we re-utilize the same board to assemble the Arduino

remote. The overall hardware essentially consists of an IR LED connected to a MCU enabled with WiFi

and Bluetooth connectivity. In spite of this complexity, there is not much circuitry to put together.

Figure: hardware required for the IR remote decoder, CC BY-SA by INDEX consortium

In order to use the IRremote library without modification to create an IR transmitter, the cathode of

the IR LED should connect to digital pin 9 of the Arduino Nano 33 IoT board. Here, we have used a

transistor and attached digital pin 9 to its gate instead, because each GPIO pin of the Arduino Nano

33 IoT is able to source a maximum DC current of 7 mA, but a typical IR LED may draw around 100 mA.

Note that we have taken as external circuitry a path between the onboard 3.3 V output and ground,

which is fit to support a DC current up to around 500 mA in a typical power supply configuration.

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Resistors are used to ensure the appropriate current limitations. In particular, the choice of the

resistor in series with the IR LED depends on its forward voltage (Vfwd), the desired current (I) and the

supply voltage (Vout), according to R = (Vout - Vfwd) / I. For instance, with a supply voltage of 3.3 V, a

desired current of 100 mA and a typical forward voltage around 1.6 V for a low-cost IR LED, the ideal

resistor should exhibit R = 17 Ω.

We are now ready to move to the software part of the project.

Using Arduino in IoT projects

Voice-controlled TV: Voice-controlled remote: Arduino IoT Cloud Service and software

This part of the project is the most complex and covers the configuration of the appropriate topic in

the Arduino IoT Cloud Service as a MQTT broker, the connection of the Arduino remote to a WiFi

network of choice and subscription to that topic as a MQTT client, and programming the behaviour of

the Arduino remote in response to new messages by flashing according to the decoded consumer IR

protocol.

The whole process is fully guided from the Arduino IoT Cloud Service. In practice, setting up a new

topic and selecting a particular board generates an automatic sketch that covers the connection to a

certain WiFi network, and the configuration of the MQTT client, and also features a template for a

callback function triggered in response to new messages.

The first step consists of setting the appropriate framework in the Arduino IoT Cloud Service by

registering the desired board, creating a so-called thing, which is a digital representation of the actual

edge device, and defining its set of properties, which are topics available for subscription that may

typically trigger the behaviour of the MCU. In this example, there will be a unique property

representing the entire TV set, mounted as “TV” property type under “Smart Home” category, given

“Read & Write” permission, and scheduled for update “When the value changes”. In practice, the

MQTT broker is ready to notify any modification in the TV topic to the MQTT client installed in the

chosen board. It will be the duty of that board to react to such notification. Note that the TV property

is also visible from a browser logging into a so-called dashboard in the Arduino IoT Cloud Service as

another client. In this particular example, the only widget available to interface to the TV property is

an on-off toggle. Other property types enable a larger selection of tools, including charts, gauges,

sliders etc. to read or write values.

http://openedx.ifac.cnr.it/courses/course-v1:IFAC-CNR+IoT002+2019_01/course/#block-v1:IFAC-CNR+IoT002+2019_01+type@sequential+block@fc256567f4854ca4b03a397acd6e6661

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Figure: overview of the TV property created in the Arduino IoT Cloud Service, CC BY-SA by INDEX consortium

With this minimal information, the Arduino IoT Cloud Service automatically creates a sketch template

ready for implementation and uploading into the selected board. This sketch template is accessible

through a link to the Arduino online IDE and comprises different items. One item is a so-called

Secret tab, where the user can enter the SSID and password of a WiFi network of choice without any

risk to expose sensitive data to a broad community of makers in the case of voluntary sharing of the

project. Another item is a thingProperties.h file containing high-level instructions to ensure

connection to the web, initiation of the MQTT client and subscription to the appropriate topic, and

should not require editing. Besides a useful ReadMe document, the last item is a .ino file that the user

can edit with the usual setup and loop functions, as well as a callback function named “onTVchange”,

which will come into play whenever the TV property changes, and will dictate the response of the

Arduino remote. In the next unit, we will make sure that the TV property changes when the Amazon

Web Service inputs new values for the channel, volume, etc according to valid voice commands. Here,

we propose an example for the .ino file:

/*

 Sketch generated by the Arduino IoT Cloud Thing "TVRemoteController"

 https://create.arduino.cc/cloud/things/994d9efc-9c38-4a4c-9d3c-454106da00f6

https://creativecommons.org/licenses/by-nc-sa/4.0/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 Arduino IoT Cloud Properties description

 The following variables are automatically generated and updated when changes are

made to the Thing properties

 CloudTelevision tv;

 Properties which are marked as READ/WRITE in the Cloud Thing will also have

functions

 which are called when their values are changed from the Dashboard.

 These functions are generated with the Thing and added at the end of this sketch.

*/

// preliminary instructions: inclusion of files and libraries; initialization of arrays of

unsigned int representing the IR codes for the various commands cracked in the first

part of this project. Note that the IR codes for channels 0 to 9 are wrapped in a super

array; creation of an instance of IRsend object to manage IR data transmission; creation

of global variables to store property values

#include "thingProperties.h"

#include <IRremote.h>

const unsigned int chan[10][67] = {

 {9150,4500, 600,550, 600,550, 600,1700, 600,550, 600,500, 650,500, 650,500,

650,500, 650,1650, 600,1700, 600,550, 600,1650, 600,1700, 600,1650, 650,1650,

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

600,1700, 600,550, 600,550, 600,550, 600,550, 600,1650, 600,550, 600,550,

600,550, 600,1700, 600,1650, 650,1650, 600,1700, 600,500, 650,1650, 600,1700,

600,1650, 650},

 {9150,4500, 600,550, 600,550, 600,1650, 650,500, 650,500, 600,550, 650,500,

600,550, 600,1700, 600,1650, 650,500, 650,1650, 600,1700, 600,1650, 600,1700,

600,1700, 600,1650, 600,550, 600,550, 600,550, 600,1700, 600,550, 600,550,

600,500, 650,500, 650,1650, 600,1700, 600,1650, 600,550, 650,1650, 600,1700,

600,1650, 600},

 {9150,4500, 600,550, 600,550, 600,1700, 600,550, 600,500, 650,500, 650,500,

650,500, 650,1650, 600,1700, 600,550, 600,1650, 600,1700, 600,1650, 650,1650,

600,1700, 600,550, 600,1650, 600,550, 600,550, 600,1700, 600,550, 600,550,

600,550, 600,1650, 600,550, 600,1700, 600,1700, 600,500, 650,1650, 600,1700,

600,1650, 600},

 {9150,4550, 600,500, 650,500, 650,1650, 600,550, 600,550, 600,550, 600,550,

600,550, 600,1650, 650,1650, 600,550, 600,1700, 600,1650, 650,1650, 600,1700,

600,1650, 600,1700, 600,1650, 650,500, 600,550, 650,1650, 600,550, 600,550,

600,550, 600,550, 600,550, 600,1650, 650,1650, 600,550, 600,1700, 600,1650,

600,1700, 600},

 {9150,4500, 600,550, 600,550, 600,1650, 650,500, 650,500, 650,500, 650,500,

600,550, 600,1700, 600,1650, 650,500, 650,1650, 600,1700, 600,1650, 600,1700,

600,1700, 600,550, 600,550, 600,1650, 600,550, 600,1700, 600,550, 600,550,

600,550, 600,1650, 600,1700, 600,550, 600,1650, 650,500, 650,1650, 600,1650,

650,1650, 600},

 {9150,4550, 600,550, 600,550, 600,1650, 600,550, 600,550, 600,550, 600,550,

600,550, 600,1700, 600,1650, 600,550, 600,1700, 600,1650, 650,1650, 600,1700,

600,1650, 600,1700, 600,550, 600,1700, 600,500, 650,1650, 600,550, 600,550,

600,550, 600,550, 600,1700, 600,550, 600,1650, 600,550, 600,1700, 600,1650,

650,1650, 600},

 {9150,4550, 600,550, 600,500, 650,1650, 600,550, 600,550, 600,550, 600,550,

600,550, 600,1650, 650,1650, 600,550, 600,1700, 600,1650, 650,1650, 600,1700,

600,1650, 600,550, 600,1700, 600,1650, 650,500, 650,1650, 600,550, 600,550,

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

600,550, 600,1650, 650,550, 600,500, 650,1650, 600,600, 550,1700, 600,1650,

600,1700, 600},

 {9150,4500, 600,550, 600,550, 600,1700, 600,550, 600,550, 600,550, 600,550,

600,550, 600,1650, 600,1700, 600,550, 600,1650, 650,1650, 600,1700, 600,1650,

600,1700, 600,1700, 600,1650, 600,1700, 600,550, 600,1650, 650,500, 650,500,

600,550, 650,500, 600,550, 600,550, 600,1700, 600,550, 600,1650, 600,1700,

600,1700, 600},

 {9150,4500, 600,550, 600,550, 600,1650, 650,500, 650,550, 600,500, 650,500,

600,550, 600,1700, 600,1700, 600,550, 600,1650, 600,1700, 600,1650, 600,1700,

600,1700, 600,550, 600,550, 600,500, 650,1650, 600,1700, 600,550, 600,550,

600,550, 600,1650, 600,1700, 600,1650, 650,550, 600,500, 650,1650, 600,1700,

600,1650, 600},

 {9150,4550, 600,550, 600,500, 650,1650, 600,550, 600,550, 600,550, 600,550,

600,550, 600,1650, 650,1650, 600,550, 600,1700, 600,1650, 600,1700, 600,1700,

600,1650, 600,1700, 600,550, 600,550, 600,1650, 600,1700, 600,550, 600,550,

600,550, 600,550, 600,1650, 650,1650, 600,550, 600,550, 600,1700, 600,1650,

600,1700, 600}

};

const unsigned int volUp[67] = {9150,4550, 600,550, 600,550, 600,1650,

650,500, 600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650, 650,500,

600,1700, 600,1700, 600,1650, 600,1700, 600,1650, 650,500, 650,1650, 600,550,

600,550, 600,550, 600,550, 600,550, 600,550, 600,1650, 600,550, 650,1650,

600,1700, 600,1650, 600,1700, 600,1650, 650,1650, 600};

const unsigned int volDown[67] = {9150,4500, 600,550, 600,550, 600,1650,

650,500, 650,500, 600,550, 650,500, 600,550, 600,1700, 600,1650, 650,500,

650,1650, 600,1700, 600,1650, 600,1700, 600,1700, 600,1650, 600,1700,

600,550, 600,550, 600,550, 600,550, 600,550, 600,550, 600,550, 600,500,

650,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600,1650, 600};

const unsigned int chanUp[67] = {9150,4500, 650,500, 650,500, 600,1700,

600,550, 600,550, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,550,

600,1700, 600,1650, 600,1700, 600,1650, 650,1650, 600,550, 600,550, 600,550,

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

600,550, 600,550, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,1700,

600,1650, 600,1700, 600,1700, 600,1650, 600,1700, 600};

const unsigned int chanDown[67] = {9150,4500, 650,500, 600,550, 650,1650,

600,550, 600,550, 600,550, 600,550, 600,550, 600,1650, 650,1650, 600,550,

600,1700, 600,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550,

600,550, 600,500, 650,500, 650,500, 650,500, 600,550, 650,1650, 600,1700,

600,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600};

const unsigned int onoff[67] = {9150,4500, 600,550, 600,550, 600,1700,

600,550, 600,500, 650,500, 650,500, 650,500, 600,1700, 600,1700, 600,550,

600,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550, 600,550,

600,1650, 600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650, 650,1650,

600,550, 600,1650, 650,1650, 600,1700, 600,1650, 600};

const unsigned int mute[67] = {9150,4500, 650,500, 600,550, 650,1650,

600,550, 600,550, 600,550, 600,550, 600,550, 600,1650, 600,1700, 600,550,

600,1650, 650,1650, 600,1700, 600,1650, 650,1650, 600,1700, 600,550, 600,550,

600,1650, 600,550, 600,550, 600,550, 600,550, 600,550, 600,1700, 600,1650,

600,550, 600,1700, 600,1650, 600,1700, 600,1700, 600};

IRsend irsend;

const int freq = 38;

bool first;

int prevChannel;

int prevVolume;

bool prevSwitch;

bool prevMute;

// the setup() function enables serial communication, calls functions defined in the

thingProperties.h file to connect to the web and the Arduino IoT Cloud Service, and to

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

subscribe to the topic of interest; initializes a variable used for synchronization; and

sets the LED_BUILTIN pin as output.

void setup() {

 Serial.begin(9600);

 delay(1500);

 initProperties();

 ArduinoCloud.begin(ArduinoIoTPreferredConnection);

 setDebugMessageLevel(2);

 ArduinoCloud.printDebugInfo();

 first = true;

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop() function calls a method that ensures the appropriate connection

void loop() {

 ArduinoCloud.update();

}

// the sendIR() function takes an array of unsigned int as parameter, and exploits the

IRsend library to transmit a corresponding pattern of IR pulses through digital pin 9.

Meanwhile the built-in LED is set on

void sendIR(const unsigned int buf[]) {

 digitalWrite(LED_BUILTIN, HIGH);

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 irsend.sendRaw(buf, 67, freq);

 delay(300);

 digitalWrite(LED_BUILTIN, LOW);

}

// the onTVChange() function is the callback function called whenever the TV property

changes

void onTvChange() {

 Serial.println("==================");

 Serial.println("Switch: "+String(tv.getSwitch()));

 Serial.println("Volume: "+String(tv.getVolume()));

 Serial.println("Channel: "+String(tv.getChannel()));

 Serial.println("Mute: "+String(tv.getMute()));

 Serial.println("==================");

// initial synchronization after powering up or resetting

 if(first){

 prevSwitch = tv.getSwitch();

 prevVolume = tv.getVolume();

 prevChannel = tv.getChannel();

 prevMute = tv.getMute();

 first = false;

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 return;

 }

// if volume has changed, update mute state, send IR signals through the sendIR()

function for volume up or down repeatedly until needed, and update volume state

 if(tv.getVolume() > prevVolume)

 {

 tv.setMute(false);

 prevMute = false;

 for(int k = prevVolume + 1; k <= tv.getVolume(); k++)

 {

 sendIR(volUp);

 Serial.println("Volume requested: "+String(tv.getVolume())+", set:

"+String(k));

 }

 prevVolume = tv.getVolume();

 }

 else if(tv.getVolume() < prevVolume)

 {

 tv.setMute(false);

 prevMute = false;

 for(int k = prevVolume - 1; k >= tv.getVolume(); k--)

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 {

 sendIR(volDown);

 Serial.println("Volume requested: "+String(tv.getVolume())+", set:

"+String(k));

 }

 prevVolume = tv.getVolume();

 }

// if mute has changed, update mute state, and send IR signals through the sendIR()

function for mute

 if(tv.getMute() != prevMute) {

 prevMute = tv.getMute();

 sendIR(mute);

 Serial.println("Mute changed: "+String(tv.getMute()));

 }

// if channel has changed, send the appropriate combination of IR signals through the

sendIR() function for the various digits, and update channel state

 if(tv.getChannel() != prevChannel) {

 int newChannel = tv.getChannel();

 if(newChannel > 0 && newChannel < 10)

 {

 sendIR(chan[newChannel]);

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 }

 else if(newChannel >= 10 && newChannel < 100)

 {

 sendIR(chan[newChannel / 10]);

 sendIR(chan[newChannel % 10]);

 }

 else if(newChannel >= 100 && newChannel < 1000)

 {

 sendIR(chan[newChannel / 100]);

 sendIR(chan[(newChannel % 100) / 10]);

 sendIR(chan[newChannel % 10]);

 }

 prevChannel = newChannel;

 Serial.println("Channel changed: "+String(tv.getChannel()));

 }

// if on/off switch has changed, update on/off switch state, and send IR signals through

the sendIR() function for on/off

 if(tv.getSwitch() != prevSwitch) {

 prevSwitch = tv.getSwitch();

 sendIR(onoff);

 Serial.println("Switch changed: "+String(tv.getSwitch()));

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

 }

}

In practice, the Arduino remote is set to grab the desired configuration through the MQTT client, make

a comparison with previous configuration, in order to decide what set of commands to transmit, and

emulate the ordinary remote in all and for all.

In the next unit, we will cover the connection of the Arduino IoT Cloud Service to the Amazon Web

Service, in order to change the TV property by relevant voice commands.

Voice-controlled TV: Voice-controlled remote: Arduino Alexa Skill

This unit briefly covers the creation of a link between the Amazon Voice Service and the Arduino IoT

Cloud Service.

We assume that a link is already in place between a smart speaker such as an Amazon Echo Dot as an

endpoint and the Amazon Voice Service over a WiFi network.

The task to establish the final link between the Amazon Voice Service and the Arduino IoT Cloud

Service is committed to a so-called webhook implemented through an AWS lambda function. In

practice, that is a callback function written in Node.js, Python or Java that is triggered by a predefined

event, and authenticates and sends data to a desired URI. In our case, the predefined event is a valid

command to reconfigure a TV, and the desired URI is the relevant topic in the Arduino IoT Cloud

Service. The latter is pinpointed as an endpoint, i.e. a device. In a webhook, data are typically

formatted in a JSON structure and wrapped in a HTTP POST request.

The procedure is fully guided at the highest level of abstraction, and the user does not need to worry

about the underlying machinery. By using a smartphone to install and configure the Arduino Alexa

Skill as a smart home utility in the Amazon Alexa App, the procedure will allow the user to create a

link between the predefined Amazon Alexa and Arduino IoT Cloud Service accounts, and to discover

and enable the TV as a new device. Of course, such a device is the virtual representation of the TV

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

properties combined in the appropriate topic in the Arduino IoT Cloud Service. The Amazon Web

Service is already set up to automatically create the due AWS lambda function.

At this point, everything is set to replace the ordinary remote with its voice-controlled upgrade.

Voice-controlled TV: Conclusions

The voice-controlled TV is now configured to respond to such commands as “Alexa turn TV on”, “Alexa

mute TV”, etc.. Simply power and place the Arduino remote within sight of the TV and start to talk to

the smart speaker in natural language.

The experimenter may probably need to replace the set of IR codes to reflect the buttons available in

the ordinary remote of the target TV, and even try to hack other IR controlled devices. We warn the

trainee that the use of contributed libraries like IRremote may entail some pitfalls, as the definition of

variables, functions and methods may change from version to version. Therefore, we cannot promise

that the code presented in this series of units will work without modification.

With respect to the previous series of units, the scope of this project is rather narrow. As we have

explained, we have chosen this case to exemplify a representative situation, where the pursuit of a

specific task of high added value may benefit from the integration of higher and lower-level

functionalities made available through web services that may provide resources as complex as speech

recognition or as flexible as generic brokerage and webhooks. There is such an ever-wider range of

offers and solutions as to satisfy most conceivable needs with relatively minor adjustments and add-

ons. Even though the development of industrial platforms requires the intervention of qualified

experts and specialized companies, repositories as the Arduino Project Hub

at https://create.arduino.cc/projecthub or the Adafruit Learning System

at https://learn.adafruit.com/ may be a source of inspiration for hobbyists, but also serve as excellent

blueprints to understand the potential of IoT at all levels.

Exercise

Suppose someone has installed several Arduino remotes for friends and relatives, but later the

Amazon Web Service has cut off its built-in support to the Arduino Alexa Skill. What would be the most

straightforward strategy to start with?

☐ To replace the Amazon Web Service with another large-scale infrastructure like Google Cloud

Platform.

☐ To implement the automatic speech recognition directly through the Arduino IoT Cloud Service .

☐ To browse the web in search of a new firmware for the Arduino remote, without many other

changes.

https://create.arduino.cc/projecthub
https://learn.adafruit.com/

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

☐ To consider the implementation of a webhook from a third-party go-between like If This Then That,

if possible, in order to create a custom connection between the Amazon Web Service and the Arduino

IoT Cloud Service

Final Exam

Internet protocol suite 2

Which layer of OSI model do functions like authentication and authorization belong to?

☐ Layer 5 (Session)

☐ Layer 7 (Application)

☐ Layer 6 (Presentation)

☐ Layer 4 (Transport)

Connections 6

Why does broadband cellular connectivity still play a fundamental role for IoT?

☐ For its global reach, scalability, and high bandwidth capabilities

☐ For its global reach and low costs.

☐ For its high bandwidth capabilities and low power consumption.

☐ For its scalability, low costs and low power consumption.

Connections 3

Over which frequency band does Bluetooth transmit data?

☐ 5 GHz.

☐ 2.4 GHz.

☐ 1 GHz.

☐ 3.4 GHz.

Application layer protocols 3

In RESTful architectures:

☐ The verb GET allows a client to replace an item within a collection.

☐ The verb GET is safe or nullipotent, because it does not alter anything on the server side.

☐ The verb GET allows a client to create a new item within a collection.

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

☐ The verb GET returns the state of a server, when it makes use of so-called cookies.

Services 4

What is not a typical use case for artificial intelligence?

☐ Solving linear equations.

☐ Image recognition in photographs.

☐ Spam filtering.

☐ Predictive maintenance.

Services 2

What is not a typical function of a web service?

☐ Routing and forwarding data packets through intermediate routers.

☐ Providing a human interface, such as a dashboard.

☐ Implementing communication among end-nodes in a network.

☐ Managing configuration changes, such as over-the-air updates.

Hands on with microcontrollers 10

What is the main difference between I2C and SPI communication protocols?

☐ I2C bus requires 2 wires and SPI bus at least 4, plus ground connections in both cases.

☐ I2C protocol is simplex and the SPI protocol is half-duplex.

☐ I2C protocol runs over UDP and SPI protocol over TCP.

☐ I2C protocol is implementable in most Arduino boards, while SPI protocol is unsuitable for

constrained contexts.

Hands on with microcontrollers 4

What basic functions does an Arduino C/C++ sketch need to include for compiling?

☐ A setup() function and a loop() function.

☐ A setup() function and an #include statement.

☐ A loop() function and a For loop.

☐ There is no fixed structure in an Arduino C/C++ sketch.

Hands on with microcontrollers 2

The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

Which of the following modules does not belong to a typical MCU architecture?

☐ Graphics processing unit.

☐ General-purpose input/output ports.

☐ Program memory.

☐ Data memory.

Hands on with microcontrollers 1

Which of the following features is not downscaled from typical microprocessors to MCUs?

☐ Connectivity options.

☐ Maximum clock speed.

☐ Maximum processing capacity.

☐ Price per piece.

